Article

Neural correlates of reward processing in schizophrenia - Relationship to apathy and depression

Section of Experimental Psychopathology, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany.
Schizophrenia Research (Impact Factor: 4.43). 12/2009; 118(1-3):154-61. DOI: 10.1016/j.schres.2009.11.007
Source: PubMed

ABSTRACT The present study employs a new framework to categorise the heterogeneous findings on the relationship between impaired reward processing and negative and affective symptoms of schizophrenia. Based on previous behavioural and neuroimaging studies we postulate that "wanting" (i.e. anticipation) of a reward is specifically related to apathy, whereas "liking" (i.e. hedonic impact) is related to anhedonia and depression--symptoms commonly observed in schizophrenia. Fifteen patients with schizophrenia or schizoaffective disorder treated with atypical antipsychotic drugs and fifteen healthy controls performed a probabilistic monetary incentive delay task while undergoing functional magnetic resonance imaging. At the group level we found no significant differences between patients and controls in neural activation during anticipation or receipt of a reward. However, in patients with schizophrenia specific relationships between ventral-striatal activation and symptoms were observed. Ventral-striatal activation during reward anticipation was negatively correlated with apathy, while activation during receipt of reward was negatively correlated with severity of depressive symptoms. These results suggest that the link between negative symptoms and reward anticipation might specifically relate to apathy, i.e. a lack of motivation and drive. Impaired hedonic reward processing might contribute to the development of depressive symptoms in patients with schizophrenia, but it is not directly associated with self-rated anhedonia. These results indicate the necessity of more specifically differentiating negative and affective symptoms in schizophrenia in order to understand the role of the reward system in their pathogenesis.

0 Bookmarks
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large number of imaging studies have examined the neural correlates of consummatory pleasure and anticipatory pleasure in schizophrenia, but the brain regions where schizophrenia patients consistently demonstrate dysfunctions remain unclear. We performed a series of meta-analyses on imaging studies to delineate the regions associated with consummatory and anticipatory pleasure dysfunctions in schizophrenia. Nineteen functional magnetic resonance imaging or positron emission tomography studies using whole brain analysis were identified through a literature search (PubMed and EBSCO; January 1990-February 2014). Activation likelihood estimation was performed using the GingerALE software. The clusters identified were obtained after controlling for the false discovery rate at p<0.05 and applying a minimum cluster size of 200mm(3). It was found that schizophrenia patients exhibited decreased activation mainly in the rostral medial prefrontal cortex (rmPFC), the right parahippocampus/amygala, and other limbic regions (e.g., the subgenual anterior cingulate cortex, the putamen, and the medial globus pallidus) when consummating pleasure. Task instructions (feeling vs. stimuli) were differentially related to medial prefrontal dysfunction in schizophrenia. When patients anticipated pleasure, reduced activation in the left putamen was observed, despite the limited number of studies. Our findings suggest that the medial prefrontal cortex and limbic regions may play an important role in neural dysfunction underlying deficits in consummatory pleasure in schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Psychiatry Research Neuroimaging 01/2015; DOI:10.1016/j.pscychresns.2015.01.001 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with schizophrenia often suffer from apathy: a quantitative reduction of voluntary, goal-directed behaviors that impairs daily functioning. We hypothesized that schizophrenia patients with high levels of apathy would show decreased activation in brain regions involved in planning and goal-directed behavior. Patients with schizophrenia or psychotic spectrum disorder (n=47) and healthy controls (n=20) performed the Tower of London (ToL) task during fMRI scanning using arterial spin labeling. To investigate the relationship between apathy and planning in patients, a proxy measure of apathy based on the Positive and Negative syndrome Scale was regressed against the task-related brain activation. Brain activation was also compared between patients and healthy controls. Higher levels of apathy were associated with less task-related activation within the inferior parietal lobule precuneus and thalamus. Compared to controls, patients showed lower activation in lateral prefrontal regions, parietal and motor areas, and a higher activation of medial frontal areas. Apathy was related to abnormal activation in thalamus and parietal regions during the ToL task. This supports the hypothesis that impaired function of brain regions involved in planning and goal-directed behavior may underlie apathy in schizophrenia. Moreover, impaired lateral prefrontal activation in schizophrenia patients compared to controls is consistent with the hypofrontality model of schizophrenia. In contrast, stronger medial frontal activation in patients may be related to increased effort to perform a task with conflicting task solutions. Copyright © 2014 Elsevier B.V. All rights reserved.
    Schizophrenia Research 02/2015; 161(2-3):367-375. DOI:10.1016/j.schres.2014.11.028 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neurobiological underpinnings of avolition in schizophrenia remain unclear. Most brain imaging research has focused on reward prediction deficit and on ventral striatum dysfunction, but findings are not consistent. In the light of accumulating evidence that both ventral striatum and dorsal caudate play a key role in motivation, we investigated ventral striatum and dorsal caudate activation during processing of reward or loss in patients with schizophrenia. We used functional magnetic resonance imaging to study brain activation during a Monetary Incentive Delay task in patients with schizophrenia, treated with second-generation antipsychotics only, and in healthy controls (HC). We also assessed the relationships of ventral striatum and dorsal caudate activation with measures of hedonic experience and motivation. The whole patient group had lower motivation but comparable hedonic experience and striatal activation than HC. Patients with high avolition scores showed lower dorsal caudate activation than both HC and patients with low avolition scores. A lower dorsal caudate activation was also observed in patients with deficit schizophrenia compared to HC and patients with non-deficit schizophrenia. Dorsal caudate activity during reward anticipation was significantly associated with avolition, but not with anhedonia in the patient group. These findings suggest that avolition in schizophrenia is linked to dorsal caudate hypoactivation.
    Psychological Medicine 01/2015; DOI:10.1017/S0033291714002943 · 5.43 Impact Factor

Full-text

Download
75 Downloads
Available from
Feb 13, 2015