Neural correlates of reward processing in schizophrenia - Relationship to apathy and depression

Section of Experimental Psychopathology, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany.
Schizophrenia Research (Impact Factor: 4.43). 12/2009; 118(1-3):154-61. DOI: 10.1016/j.schres.2009.11.007
Source: PubMed

ABSTRACT The present study employs a new framework to categorise the heterogeneous findings on the relationship between impaired reward processing and negative and affective symptoms of schizophrenia. Based on previous behavioural and neuroimaging studies we postulate that "wanting" (i.e. anticipation) of a reward is specifically related to apathy, whereas "liking" (i.e. hedonic impact) is related to anhedonia and depression--symptoms commonly observed in schizophrenia. Fifteen patients with schizophrenia or schizoaffective disorder treated with atypical antipsychotic drugs and fifteen healthy controls performed a probabilistic monetary incentive delay task while undergoing functional magnetic resonance imaging. At the group level we found no significant differences between patients and controls in neural activation during anticipation or receipt of a reward. However, in patients with schizophrenia specific relationships between ventral-striatal activation and symptoms were observed. Ventral-striatal activation during reward anticipation was negatively correlated with apathy, while activation during receipt of reward was negatively correlated with severity of depressive symptoms. These results suggest that the link between negative symptoms and reward anticipation might specifically relate to apathy, i.e. a lack of motivation and drive. Impaired hedonic reward processing might contribute to the development of depressive symptoms in patients with schizophrenia, but it is not directly associated with self-rated anhedonia. These results indicate the necessity of more specifically differentiating negative and affective symptoms in schizophrenia in order to understand the role of the reward system in their pathogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.
    European Archives of Psychiatry and Clinical Neuroscience 03/2015; DOI:10.1007/s00406-015-0590-4 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with schizophrenia often suffer from apathy: a quantitative reduction of voluntary, goal-directed behaviors that impairs daily functioning. We hypothesized that schizophrenia patients with high levels of apathy would show decreased activation in brain regions involved in planning and goal-directed behavior. Patients with schizophrenia or psychotic spectrum disorder (n=47) and healthy controls (n=20) performed the Tower of London (ToL) task during fMRI scanning using arterial spin labeling. To investigate the relationship between apathy and planning in patients, a proxy measure of apathy based on the Positive and Negative syndrome Scale was regressed against the task-related brain activation. Brain activation was also compared between patients and healthy controls. Higher levels of apathy were associated with less task-related activation within the inferior parietal lobule precuneus and thalamus. Compared to controls, patients showed lower activation in lateral prefrontal regions, parietal and motor areas, and a higher activation of medial frontal areas. Apathy was related to abnormal activation in thalamus and parietal regions during the ToL task. This supports the hypothesis that impaired function of brain regions involved in planning and goal-directed behavior may underlie apathy in schizophrenia. Moreover, impaired lateral prefrontal activation in schizophrenia patients compared to controls is consistent with the hypofrontality model of schizophrenia. In contrast, stronger medial frontal activation in patients may be related to increased effort to perform a task with conflicting task solutions. Copyright © 2014 Elsevier B.V. All rights reserved.
    Schizophrenia Research 02/2015; 161(2-3):367-375. DOI:10.1016/j.schres.2014.11.028 · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large number of imaging studies have examined the neural correlates of consummatory pleasure and anticipatory pleasure in schizophrenia, but the brain regions where schizophrenia patients consistently demonstrate dysfunctions remain unclear. We performed a series of meta-analyses on imaging studies to delineate the regions associated with consummatory and anticipatory pleasure dysfunctions in schizophrenia. Nineteen functional magnetic resonance imaging or positron emission tomography studies using whole brain analysis were identified through a literature search (PubMed and EBSCO; January 1990-February 2014). Activation likelihood estimation was performed using the GingerALE software. The clusters identified were obtained after controlling for the false discovery rate at p<0.05 and applying a minimum cluster size of 200mm(3). It was found that schizophrenia patients exhibited decreased activation mainly in the rostral medial prefrontal cortex (rmPFC), the right parahippocampus/amygala, and other limbic regions (e.g., the subgenual anterior cingulate cortex, the putamen, and the medial globus pallidus) when consummating pleasure. Task instructions (feeling vs. stimuli) were differentially related to medial prefrontal dysfunction in schizophrenia. When patients anticipated pleasure, reduced activation in the left putamen was observed, despite the limited number of studies. Our findings suggest that the medial prefrontal cortex and limbic regions may play an important role in neural dysfunction underlying deficits in consummatory pleasure in schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Psychiatry Research Neuroimaging 01/2015; 231(3). DOI:10.1016/j.pscychresns.2015.01.001 · 2.83 Impact Factor


Available from
Feb 13, 2015