The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi

Department of Biology, University of Maryland, College Park, MD 20742, United States.
Vision research (Impact Factor: 2.38). 12/2009; 50(3):357-63. DOI: 10.1016/j.visres.2009.12.004
Source: PubMed

ABSTRACT The lens plays an important role in regulating the wavelengths of light that reach the retina. However, the evolutionary relationship between lens transmission and retinal sensitivity remains cloudy at best. We examined the relationship between lens transmission and opsin gene expression in a group of rapidly radiating cichlids from East Africa. Lens transmission was bimodal, either cutting off around 360 or 400 nm, and appeared to be quite labile evolutionarily. We found a strong correlation between lens transmission and SWS1 (UV) opsin gene expression, suggesting that UV transmitting lenses are adaptive in cichlids. Species which expressed high levels of SWS2B (violet) opsin varied in their lens transmission while most species that expressed high levels of SWS2A (blue) opsin had UV blocking lenses. In no instance did lens transmission appear to limit retinal sensitivity. Finally, the strong correlation that we observe between SWS1 expression and lens transmission suggests that these two traits might be coupled genetically.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.
    Journal of Experimental Biology 02/2013; 216(9). DOI:10.1242/jeb.079558 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Light plays a pivotal role in animal orientation. Aquatic animals face the problem that penetration of light in water is restricted through high attenuation which limits the use of visual cues. In pure water, blue and green light penetrates considerably deeper than red and infrared spectral components. Submicroscopic particles and coloured dissolved organic matter, however, may cause increased scattering and absorption of short-wave components of the solar spectrum, resulting in a relative increase of red and infrared illumination. Here we investigated the potential of near-infrared (NIR) light as a cue for swimming orientation of the African cichlid fish (Cichlidae) Oreochromis mossambicus. A high-throughput semi-automated video tracking assay was used to analyse innate behavioural NIR-sensitivity. Fish revealed a strong preference to swim in the direction of NIR light of a spectral range of 850-950nm at an irradiance similar to values typical of natural surface waters. Our study demonstrates the ability of teleost fish to sense NIR and use it for phototactic swimming orientation.
    Zoology 07/2012; 115(4):233-8. DOI:10.1016/j.zool.2012.01.005 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information on the anatomy of the eye and the topography of cone photoreceptor cells in the retina is presented for the Nile Tilapia (Oreochromis niloticus). In adults, the shape and proportions of the ocular components of the prominent eye conform to the general form of fish eyes, as determined using cryo-sectioned eyes. The lens is approximately spherical and there is little variation in the distance from the centre of the lens to the border between the choroid and retina at a range of angles about the optical axis. The average ratio of the distance from the centre of the lens to the retina: lens radius (Matthiessen’s ratio) is 2.44:1. In retinal wholemounts, single and double (twin) cone photoreceptors, forming a square mosaic, are present. Peak photoreceptor densities for both morphological cone types are found in the temporal retina. Using peak cone densities and estimates of focal length from cryo-sectioned eyes, visual acuity is calculated to be 5.44 cycles per deg. The lack of apparent specific ocular or retinal specializations and the relatively low visual acuity reflect the lifestyle of the Nile Tilapia and may allow it to adapt to changes in visual environment in its highly variable natural habitat as well as contributing to the ‘ecological flexibility’ of this species. KeywordsCone mosaic-Eye-Lens-Photoreceptor-Retina-Visual acuity
    Environmental Biology of Fishes 08/2010; 88(4):369-376. DOI:10.1007/s10641-010-9652-7 · 1.36 Impact Factor


Available from