The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi.

Department of Biology, University of Maryland, College Park, MD 20742, United States.
Vision research (Impact Factor: 2.29). 12/2009; 50(3):357-63. DOI: 10.1016/j.visres.2009.12.004
Source: PubMed

ABSTRACT The lens plays an important role in regulating the wavelengths of light that reach the retina. However, the evolutionary relationship between lens transmission and retinal sensitivity remains cloudy at best. We examined the relationship between lens transmission and opsin gene expression in a group of rapidly radiating cichlids from East Africa. Lens transmission was bimodal, either cutting off around 360 or 400 nm, and appeared to be quite labile evolutionarily. We found a strong correlation between lens transmission and SWS1 (UV) opsin gene expression, suggesting that UV transmitting lenses are adaptive in cichlids. Species which expressed high levels of SWS2B (violet) opsin varied in their lens transmission while most species that expressed high levels of SWS2A (blue) opsin had UV blocking lenses. In no instance did lens transmission appear to limit retinal sensitivity. Finally, the strong correlation that we observe between SWS1 expression and lens transmission suggests that these two traits might be coupled genetically.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.
    Journal of Experimental Biology 02/2013; 216(9). DOI:10.1242/jeb.079558 · 3.00 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions.
    Proceedings of the Royal Society B: Biological Sciences 12/2014; 281(1797). DOI:10.1098/rspb.2014.1980 · 5.29 Impact Factor


Available from