Article

The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi.

Department of Biology, University of Maryland, College Park, MD 20742, United States.
Vision research (Impact Factor: 2.29). 12/2009; 50(3):357-63. DOI: 10.1016/j.visres.2009.12.004
Source: PubMed

ABSTRACT The lens plays an important role in regulating the wavelengths of light that reach the retina. However, the evolutionary relationship between lens transmission and retinal sensitivity remains cloudy at best. We examined the relationship between lens transmission and opsin gene expression in a group of rapidly radiating cichlids from East Africa. Lens transmission was bimodal, either cutting off around 360 or 400 nm, and appeared to be quite labile evolutionarily. We found a strong correlation between lens transmission and SWS1 (UV) opsin gene expression, suggesting that UV transmitting lenses are adaptive in cichlids. Species which expressed high levels of SWS2B (violet) opsin varied in their lens transmission while most species that expressed high levels of SWS2A (blue) opsin had UV blocking lenses. In no instance did lens transmission appear to limit retinal sensitivity. Finally, the strong correlation that we observe between SWS1 expression and lens transmission suggests that these two traits might be coupled genetically.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The visual system plays a role in nearly every aspect of an organism's life history, and there is a direct link between visual pigment phenotypes and opsin genotypes. In previous studies of African cichlid fishes, we found evidence for positive selection among some opsins, with sequence variation greatest for opsins producing the shortest and longest wavelength visual pigments. In this study, we examined opsin evolution in the closely related damselfish family (Pomacentridae), a group of reef fishes that are distributed widely and have a documented fossil record of at least 50 million years (MY). We found increased functional variation in the protein sequences of opsins at the short- and long-wavelength ends of the visual spectrum, in agreement with the African cichlids, despite an order of magnitude difference in the ages of the two radiations. We also reconstructed amino acid substitutions across opsin tuning sites. These reconstructions indicated multiple instances of parallel evolution, at least one definitive case of convergent evolution, and one evolutionary reversal. Our findings show that the amino acids at spectral tuning sites are labile evolutionarily, and that the same codons evolve repeatedly. These findings emphasize that the aquatic light environment can shape opsin sequence evolution. They further show that phylogenetic approaches can provide important insights into the mechanisms by which natural selection "tinkers" with phenotypes.
    Journal of Molecular Evolution 10/2012; · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.
    Journal of Experimental Biology 02/2013; · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV) vision plays an important role in interspecific and intraspecific communication in many animals. However, UV vision and its adaptive significance have been investigated in only approximately 1% of more than 5000 species of jumping spiders (Araneae: Salticidae), renowned for their unique, complex eyes that support exceptional spatial acuity and visually based behaviour. To appreciate the adaptive significance of UV vision, it is important to establish whether salticids can perceive UV and whether the perception of UV varies with ecological factors such as light environment. In this study, we measured the UV-transmission properties of the principal-eye corneas of 128 salticid species. We found that the corneas of all measured species were able to transmit UV light, making the perception of UV possible. Three classes of corneal spectral transmission curves were identified; the majority of species had a Class II curve with a less-steep slope and a gradual onset of the transmission cut-off; all the remaining species had a Class I curve with a very steep slope and a sharp cut-off except for one species that had a Class III curve with an intermediate step, which appeared as a shoulder on the descending part of the transmission curve. The T(50) cut-off transmission values (the wavelength at which 50% of the maximum transmission is reached) in salticid corneas vary with species and light habitat. The corneas of species inhabiting open bush had a higher relative transmission at short wavelengths in the UV than forest species. This is the first investigation of corneal transmission in spiders and suggests that UV perception is widespread in salticids.
    Journal of Experimental Biology 08/2012; 215(Pt 16):2853-9. · 3.24 Impact Factor

Full-text

View
0 Downloads
Available from