Targeted Next-Generation Sequencing Appoints C16orf57 as Clericuzio-Type Poikiloderma with Neutropenia Gene

Università degli Studi di Milano, Dipartimento di Biologia e Genetica per le Scienze Mediche, Milan, Italy.
The American Journal of Human Genetics (Impact Factor: 10.99). 12/2009; 86(1):72-6. DOI: 10.1016/j.ajhg.2009.11.014
Source: PubMed

ABSTRACT Next-generation sequencing is a straightforward tool for the identification of disease genes in extended genomic regions. Autozygosity mapping was performed on a five-generation inbred Italian family with three siblings affected with Clericuzio-type poikiloderma with neutropenia (PN [MIM %604173]), a rare autosomal-recessive genodermatosis characterised by poikiloderma, pachyonychia, and chronic neutropenia. The siblings were initially diagnosed as affected with Rothmund-Thomson syndrome (RTS [MIM #268400]), with which PN shows phenotypic overlap. Linkage analysis on all living subjects of the family identified a large 16q region inherited identically by descent (IBD) in all affected family members. Deep sequencing of this 3.4 Mb region previously enriched with array capture revealed a homozygous c.504-2 A>C mismatch in all affected siblings. The mutation destroys the invariant AG acceptor site of intron 4 of the evolutionarily conserved C16orf57 gene. Two distinct deleterious mutations (c.502A>G and c.666_676+1del12) identified in an unrelated PN patient confirmed that the C16orf57 gene is responsible for PN. The function of the predicted C16orf57 gene is unknown, but its product has been shown to be interconnected to RECQL4 protein via SMAD4 proteins. The unravelled clinical and genetic identity of PN allows patients to undergo genetic testing and follow-up.

  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
    Advances in Experimental Medicine and Biology 01/2014; 825:1-55. DOI:10.1007/978-1-4939-1221-6_1 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poikiloderma with neutropenia (PN), is a rare genodermatosis associated with patognomic features of poikiloderma and permanent neutropenia. Three common recurrent mutations of related gene, USB1, were considered to be associated with three different ethnic origins. The most common recurrent mutation, c.531delA, has been detected in seven Caucasian patients in the literature. In this paper, we present review of all patients from the literature and report two additional patients of Turkish ancestry with the diagnosis of PN. The diagnosis of these two PN patients were made clinically and confirmed by molecular analysis which detected the most common recurrent mutation, c.531delA. Genotype-ethnic origin correlation hypothesis, therefore, has been strengthened with this result. Short stature in PN, is a common finding, which until now has never been treated with growth hormone (GH). One of our patients is the first patient with attempted treatment of short stature via GH administration. Finally, both of our patients had high-pitched voice and vocal cord nodules which might be considered as additional clinical findings not associated with PN before. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 10/2014; 164(10). DOI:10.1002/ajmg.a.36683 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomics has revolutionized the study of rare diseases. In this review, we overview the latest technological development, rare disease discoveries, implementation obstacles and bioethical challenges. First, we discuss the technology of genome and exome sequencing, including the different next-generation platforms and exome enrichment technologies. Second, we survey the pioneering centers and discoveries for rare diseases, including few of the research institutions that have contributed to the field, as well as an overview survey of different types of rare diseases that have had new discoveries due to next-generation sequencing. Third, we discuss the obstacles and challenges that allow for clinical implementation, including returning of results, informed consent and privacy. Last, we discuss possible outlook as clinical genomics receives wider adoption, as third-generation sequencing is coming onto the horizon, and some needs in informatics and software to further advance the field.
    Expert Review of Molecular Diagnostics 04/2014; DOI:10.1586/14737159.2014.904749 · 4.27 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014