Ghrelin-like peptide with fatty acid modification and O-glycosylation in the red stingray, Dasyatis akajei

Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan.
BMC Biochemistry (Impact Factor: 1.44). 12/2009; 10(1):30. DOI: 10.1186/1471-2091-10-30
Source: PubMed


Ghrelin (GRLN) is now known to be an appetite-stimulating and growth hormone (GH)-releasing peptide that is predominantly synthesized and secreted from the stomachs of various vertebrate species from fish to mammals. Here, we report a GRLN-like peptide (GRLN-LP) in a cartilaginous fish, the red stingray, Dasyatis akajei.
The purified peptide contains 16 amino acids (GVSFHPQPRS10TSKPSA), and the serine residue at position 3 is modified by n-octanoic acid. The modification is the characteristic of GRLN. The six N-terminal amino acid residues (GVSFHP) were identical to another elasmobranch shark GRLN-LP that was recently identified although it had low identity with other GRLN peptides. Therefore, we designated this peptide stingray GRLN-LP. Uniquely, stingray GRLN-LP was O-glycosylated with mucin-type glycan chains [N-acetyl hexosamine (HexNAc)3 hexose(Hex)2] at threonine at position 11 (Thr-11) or both serine at position 10 (Ser-10) and Thr-11. Removal of the glycan structure by O-glycanase made the in vitro activity of stingray GRLN-LP decreased when it was evaluated by the increase in intracellular Ca2+ concentrations using a rat GHS-R1a-expressing cell line, suggesting that the glycan structure plays an important role for maintaining the activity of stingray GRLN-LP.
This study reveals the structural diversity of GRLN and GRLN-LP in vertebrates.

Download full-text


Available from: Kouhei Matsuda, Aug 27, 2014
20 Reads
  • Source
    • "In humans, the expression of GHSR has been reported in the spleen, lymph nodes, and lymphocytes (Gnanapavan et al. 2002). The presence of GHSR has also been found in mouse spleen cells and spleen, gill, kidney, and leukocytes in teleost fish (Xia et al. 2004, Yada et al. 2006, Kaiya et al. 2009a,b,c). The treated larvae exhibit a better growth rate as well as an enhancement of the some innate immune response parameters , improving the larvae quality. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In teleosts fish, secretion of GH is regulated by several hypothalamic factors that are influenced by the physiological state of the animal. There is an interaction between immune and endocrine systems through hormones and cytokines. GH in fish is involved in many physiological processes that are not overtly growth related, such as saltwater osmoregulation, antifreeze synthesis, and the regulation of sexual maturation and immune functions. This study was conducted to characterize a decapeptide compound A233 (GKFDLSPEHQ) designed by molecular modeling to evaluate its function as a GH secretagogue (GHS). In pituitary cell culture, the peptide A233 induces GH secretion and it is also able to increase superoxide production in tilapia head-kidney leukocyte cultures. This effect is blocked by preincubation with the GHS receptor antagonist [d-Lys(3)]-GHRP6. Immunoneutralization of GH by addition of anti-tilapia GH monoclonal antibody blocked the stimulatory effect of A233 on superoxide production. These experiments propose a GH-mediated mechanism for the action of A233. The in vivo biological action of the decapeptide was also demonstrated for growth stimulation in goldfish and tilapia larvae (P<0.001). Superoxide dismutase levels, antiprotease activity, and lectin titer were enhanced in tilapia larvae treated with this novel molecule. The decapeptide A233 designed by molecular modeling is able to function as a GHS in teleosts and enhance parameters of the innate immune system in the fish larvae.
    Journal of Endocrinology 06/2012; 214(3):409-19. DOI:10.1530/JOE-11-0373 · 3.72 Impact Factor
  • Source
    • "In fish, ghrelin has been identified in various species including goldfish [43], Japanese eel [10], Mozambique tilapia [11], Nile tilapia [31], rainbow trout [9], channel catfish [12], sea bream [49], carp [21], sea bass [41], Atlantic halibut [23], zebrafish [22], Atlantic cod [47] and Arctic charr [4]. In addition, ghrelin-like peptide (GRLN-LP) has been identified in cartilaginous fish [14] [18]. The peptides of teleost ghrelin and shark GRLN-LP have different lengths of 12–25 amino acid residues, and have acylation of the third amino acid residue like in mammalian ghrelin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Full length cDNA and gene encoding ghrelin precursor and mature ghrelin peptide were identified from the stomach of Pacific bluefin tuna, Thunnus orientalis, which has unique metabolic physiology and high commercial value at fishery markets. Quantitative expression analysis was conducted for the gastric ghrelin and pepsinogen 2 genes during the early stage of somatic growth from the underyearling to yearling fish. The full length cDNA of bluefin tuna ghrelin precursor has a length of 470bp and the deduced precursor is composed of 107 amino acids. The ghrelin gene is 1.9kbp in length and has a 4 exon-3 intron structure. The major form of mature ghrelin in the stomach was an octanoylated 20-amino acid peptide with C-terminal amidation, while overall 12 different forms of ghrelin peptides, including short form of 18-amino acid peptide and seven kinds of acyl modifications were identified. The expression profiles of the gastric ghrelin and pepsinogen 2 genes showed no significant changes related to the early growth stages. The present results suggest that digestive physiology has already been functional in this growth stage of the juvenile bluefin tuna and ghrelin may have a role in the sustained digestive and metabolic activities.
    General and Comparative Endocrinology 04/2012; 178(1):89-97. DOI:10.1016/j.ygcen.2012.04.026 · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Not Available
    Device Research Conference Digest, 2005. DRC '05. 63rd; 02/2005
Show more