Real-time monitoring of herbivore induced volatile emissions in the field.

Ionicon Analytik GmbH, Technikerstrasse 21a, 6020 Innsbruck, Austria.
Physiologia Plantarum (Impact Factor: 3.66). 11/2009; 138(2):123-33. DOI: 10.1111/j.1399-3054.2009.01322.x
Source: PubMed

ABSTRACT When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study offers new insight and data in support of the “opportunist hypothesis”, which suggests that there might be a relationship between carotenoid and volatile isoprenoid production. Five species of volatile isoprenoid-emitting plants (Eucalyptus globulus, Eucalyptus gunnii, Mucuna pruriens, Lycopersicon esculentum and Quercus ilex) were exposed to a range of imposed and natural stress conditions over a period of a few weeks in order to generate different levels of isoprenoid production potential. Volatile isoprenoid emission potentials and carotenoid concentrations were measured in all species, and dimethylallyl diphosphate (DMAPP) concentrations were measured in E. globulus, E. gunnii, M. pruriens and L. esculentum. Generally, instantaneously emitted isoprenoid emission potentials were positively correlated with carotenoid concentrations, and were negatively correlated with DMAPP concentrations. In contrast, emission potentials of monoterpenes stored in tissue pools were negatively correlated with carotenoid concentrations, and positively correlated with DMAPP concentrations. Our results support the possibility of a link (either direct, e.g. via substrate availability, or indirect, e.g. via complementary functionality) between emission potential of the volatile isoprenoid compounds studied here, and carotenoid synthesis at time scales of days to weeks.
    Acta Physiologiae Plantarum 11/2013; · 1.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aims Volatile organic compound (VOC) emissions from biogenic sources are important contributors to chemical reactions in the air. Soil/forest floor VOCs contribute significantly to the ecosystem scale emissions, however, these emissions and their temporal and spatial variations are poorly characterised. The below-canopy VOC emissions have been measured mainly in campaigns; continuous measurements over the whole growing season are rare. Methods VOCs were measured from boreal forest floor over the snow-free season 2010 in southern Finland with automated flow-through chambers connected to proton transfer reaction-mass spectrometer (PTR-MS). We measured 10 masses in total, of which five quantitatively (M33, M45, M59, M69, M137). Results All of the fluxes showed clear diurnal and seasonal variation, being at their highest in early summer. Spatial variation in the fluxes was great and the lowest rates were found in chambers with dense vegetation cover. Also, VOCs deposition was observed regularly. Monoterpene (M137) emissions were one magnitude higher (up to 264 ng m−2 s−1) than other emissions. The VOC fluxes correlated positively with temperature and light, while relative humidity correlated negatively. Conclusions Results indicated that forest floor plays a substantial role in the boreal forest total VOC emissions. Understanding the processes controlling VOC emissions requires more detailed analysis and long-time measurements with sufficient time resolution and analytical accuracy.
    Plant and Soil 12/2012; · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbivore induced plant volatiles (HIPVs) are specific volatile organic compounds (VOC) that a plant produces in response to herbivory. Some HIPVs are only produced after damage, while others are also produced by intact plants, but in lower quantities. Among the known functions of HIPVs are within plant volatile signaling to activate systemic plant defenses, the priming and activation of defenses in neighboring plants and the attraction of natural enemies of herbivores. When released into the atmosphere a plant's control over the produced compounds ends. However, many of the HIPVs are highly reactive with atmospheric oxidants and their atmospheric life times could be relatively short, often only a few minutes. We summarise the potential ecological and atmospheric processes that involve the reaction products of HIPVs in their gaseous, liquid and solid secondary organic aerosol (SOA) forms, both in the atmosphere and after deposition on plant surfaces. A potential negative feedback loop, based on the reactions forming SOA from HIPVs and the associated stimulation of sun screening cloud formation is presented. This hypothesis is based on recent field surveys in the geographical areas facing the greatest degree of global warming and insect outbreaks. Furthermore, we discuss how these processes could benefit the individual plant or conspecifics that originally released the HIPVs into the atmosphere. Further ecological studies should aim to elucidate the possible reasons for biosynthesis of short-lived volatile compounds to have evolved as a response to external biotic damage to plants.
    Frontiers in Plant Science 01/2013; 4:185. · 3.60 Impact Factor


Available from
May 31, 2014