Article

Real-time monitoring of herbivore induced volatile emissions in the field

Ionicon Analytik GmbH, Technikerstrasse 21a, 6020 Innsbruck, Austria.
Physiologia Plantarum (Impact Factor: 3.26). 11/2009; 138(2):123-33. DOI: 10.1111/j.1399-3054.2009.01322.x
Source: PubMed

ABSTRACT When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.

Download full-text

Full-text

Available from: Jarmo K Holopainen, Feb 18, 2014
0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant-derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux-gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale.
    GCB Bioenergy 01/2012; 5(4):375-383. DOI:10.1111/j.1757-1707.2012.01189.x · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several volatile organic compounds (VOCs) have been reported as having a communication role between plants and also between plants and animals. We aimed to test whether methanol, a short-chain oxygenated VOC, could also have a signalling role between plants. We monitored photosynthetic performance and VOC exchange rates of Quercus ilex L. saplings before and after two different treatments: (a) clipping of some leaves to simulate an attack by herbivores and (b) fumigation with gaseous methanol for 5h to simulate the amount of methanol a plant could receive from surrounding plants if those had been already attacked by herbivores. The clipping treatment enhanced the photosynthetic rates, the chlorophyll a to b ratio and the carotenoid to chlorophyll ratio of non-clipped leaves, suggesting an activation of plant protective metabolism. Also, a small but interesting systemic (in non-clipped leaves) increase in methanol emission rates was observed, which agrees with the possibility that methanol may act as a signalling cue. The methanol fumigation treatment induced an increase in the actual photochemical efficiency of PSII and also in the carotenoid to chlorophyll ratio. Methanol fumigation also promoted a 14% increase in the monoterpene emission rate, 1day after the treatment, a similar response to the ones induced by other signalling VOCs. The enhanced monoterpene emissions could add to the blend of VOCs emitted after stress and be part of further signalling pathways, thus forwarding the message started by methanol. This study suggests that clipping and methanol fumigation at natural concentrations elicit significant neighbour plant physiological responses and further BVOC emissions. KeywordsMethanol– Quercus ilex –Monoterpenes–Emission rates–Plant–plant communication–Signal–BVOCs–Photosynthetic rates–Photosynthetic pigments
    Acta Physiologiae Plantarum 11/2011; 33(6):2413-2422. DOI:10.1007/s11738-011-0782-0 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known on aphid-induced emissions of volatile organic compounds (VOCs) from trees and particularly on their intraspecific variability in association with resistance traits. We compared VOC emissions from five peach cultivars (Prunus persica (L.) Batsch) and a wild relative (Prunus davidiana (Carrière) Franch) that differ in their level (susceptible/resistant) and type (antixenosis, antibiosis) of resistance to the green peach aphid, Myzus persicae (Sulzer). Additionally, the kinetics of VOC induction in response to aphids was compared with that by mechanical wounding. Qualitative and overall quantitative differences among peach genotypes were found in VOC emissions that were mainly composed of methyl-salicylate, farnesenes, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene. Irrespective of the type of resistance, all resistant genotypes had increased VOC emissions upon aphid attack, while in susceptible genotypes emissions remained low. Emission increases were highest in the genotypes that express increased aphid resistance during second infestations, which had also the highest proportions of methyl-salicylate in their emissions. VOC induction by aphids proceeded slowly with a delay of several hours. Artificial wounding of leaves did not result in emissions of aphid-induced VOCs but caused an immediate burst of green leaf volatiles and benzaldehyde. We conclude that VOC induction in resistant peach cultivars is part of a general defence syndrome that is being avoided or suppressed by M. persicae in the susceptible genotypes. The induction likely involves an aphid-specific elicitor and (methyl)-salicylate in the subsequent signalling and regulation processes that should include gene activation due to the marked delay in the emission response. The results are compared with those of the literature and discussed in view of their ecological and environmental significance.
    Tree Physiology 10/2010; 30(10):1320-34. DOI:10.1093/treephys/tpq072 · 3.41 Impact Factor