A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.

Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea.
Environmental Science and Technology (Impact Factor: 5.48). 12/2009; 43(24):9525-30. DOI: 10.1021/es9022317
Source: PubMed

ABSTRACT This paper reports successful hydrogen evolution using a dye-sensitized solar cell (DSSC)-powered microbial electrolysis cell (MEC) without a Pt catalyst on the cathode, indicating a solution for the inherent drawbacks of conventional MECs, such as the need for an external bias and catalyst. DSSCs fabricated by assembling a ruthenium dye-loaded TiO(2) film and platinized FTO glass with an I(-)/I(3)(-) redox couple were demonstrated as an alternative bias (V(oc) = 0.65 V). Pt-loaded (0.3 mg Pt/cm(2)) electrodes with a Pt/C nanopowder showed relatively faster hydrogen production than the Pt-free electrodes, particularly at lower voltages. However, once the applied photovoltage exceeded a certain level (0.7 V), platinum did not have any additional effect on hydrogen evolution in the solar-powered MECs: hydrogen conversion efficiency was almost comparable for either the plain (71.3-77.0%) or Pt-loaded carbon felt (79.3-82.0%) at >0.7 V. In particular, the carbon nanopowder-coated electrode without Pt showed significantly enhanced performance compared to the plain electrode, which indicates efficient electrohydrogenesis, even without Pt by enhancing the surface area. As the applied photovoltage was increased, anodic methanogenesis decreased gradually, resulting in increasing hydrogen yield.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.
    Biotechnology Advances 05/2013; DOI:10.1016/j.biotechadv.2013.05.001 · 8.91 Impact Factor
  • Source
    01/2011; , ISBN: 978-0-12-385099-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a self-biased, solar-driven microbial photoelectrochemical cell (solar MPC) that can produce sustainable energy through coupling the microbial catalysis of biodegradable organic matter with solar energy conversion. The solar MPC consists of a p-type cuprous oxide nanowire-arrayed photocathode and an electricigen (Shewanella oneidensis MR-1)-colonizing anode, which can harvest solar energy and bioenergy, respectively. The photocathode and bioanode are interfaced by matching the redox potentials of bacterial cells and the electronic bands of semiconductor nanowires. We successfully demonstrated substantial current generation of 200 μA from the MPC device based on the synergistic effect of the bioanode (projected area of 20 cm2) and photocathode (projected area of 4 cm2) at zero bias under white light illumination of 20 mW/cm2. We identified the transition of rate-limiting step from the photocathode to the bioanode with increasing light intensities. The solar MPC showed self-sustained operation for more than 50 h in batch-fed mode under continuous light illumination. The ability to tune the synergistic effect between microbial cells and semiconductor nanowire systems could open up new opportunities for microbial/nanoelectronic hybrid devices with unique applications in energy conversion, environmental protection, and biomedical research.
    Nano Letters 10/2010; 10(11):4686-91. DOI:10.1021/nl102977n · 12.94 Impact Factor