Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.

Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
Journal of Neuroscience Research (Impact Factor: 2.97). 12/2009; 88(7):1433-44. DOI:10.1002/jnr.22309
Source: PubMed

ABSTRACT The mechanical damage to neurons and their processes induced by spinal cord injury (SCI) causes a progressive cascade of pathophysiological events beginning with the derangement of ionic equilibrium and collapse of membrane permeability. This leads to a cumulative deterioration of neurons, axons, and the tissue architecture of the cord. We have previously shown that the application of the hydrophilic polymer polyethylene glycol (PEG) following spinal cord or brain injury can rapidly restore membrane integrity, reduce oxidative stress, restore impaired axonal conductivity, and mediate functional recovery in rats, guinea pigs, and dogs. However there are limits to both the concentration and the molecular weight of the application that do not permit the broadest recovery across an injured animal population. In this study, PEG-decorated silica nanoparticles (PSiNPs) sealed cells, as shown by the significantly reduced leakage of lactate dehydrogenase from damaged cells compared with uncoated particles or PEG alone. Further in vivo tests showed that PSiNPs also significantly reduced the formation of reactive oxygen species and the process of lipid peroxidation of the membrane. Fabrication of PSiNPs containing embedded dyes also revealed targeting of the particles to damaged, but not undamaged, spinal cord tissues. In an in vivo crush/contusion model of guinea pig SCI, every animal but one injected with PSiNPs recovered conduction through the cord lesion, whereas none of the control animals did. These findings suggest that the use of multifunctional nanoparticles may offer a novel treatment approach for spinal cord injury, traumatic brain injury, and possibly neurodegenerative disorders.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.
    Nanoscale 08/2013; · 6.23 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Introduction: Spinal cord disorders (SCDs) are among the most devastating neurological diseases, due to their acute and long-term health consequences, the reduced quality of life and the high economic impact on society. Here, drug administration is severely limited by the blood-spinal cord barrier (BSCB) that impedes to reach the cord from the bloodstream. So, developing a suitable delivery route is mandatory to increase medical chances. Areas covered: This review provides an overview of drug delivery systems used to overcome the inaccessibility of the cord. On one side, intrathecal administration, either with catheters or with biomaterials, represents the main route to administer drugs to the spinal cord; on the other side, more recent strategies involve chemical or electromagnetic disruption of the barrier and synthesis of novel functionalized compounds as nanoparticles and liposomes able to cross BSCB. Expert opinion: Both the multifactorial pathological progression and the restricted access of therapeutic drugs to the spine are probably the main reasons behind the absence of efficient therapeutic approaches for SCDs. Hence, very recent highlights suggest the use of original strategies to overcome the BSCB, and new multidrug delivery systems capable of local controlled release of therapeutic agents have been developed. These issues can be addressed by using nanoparticles technology and smart hydrogel drug delivery systems, providing an increased therapeutic compound delivery in the spinal cord environment and multiple administrations able to synergize treatment efficacy.
    Expert Opinion on Drug Delivery 01/2013; · 4.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The incidence of acute and chronic spinal cord injury (SCI) in the United States is more than 10,000 per year, resulting in 720 cases per million persons enduring permanent disability each year. The economic impact of SCI is estimated to be more than 4 billion dollars annually. Preclinical studies, case reports, and small clinical trials suggest that early treatment may improve neurological recovery. To date, no proven therapeutic modality exists that has demonstrated a positive effect on neurological outcome. Emerging data from recent preclinical and clinical studies offer hope for this devastating condition. This review gives an overview of current basic research and clinical studies for the treatment of SCI.
    Neurochemical Research 03/2013; · 2.13 Impact Factor