Altered resource availability and the population dynamics of tree species in Amazonian secondary forests.

School of Forest Resources and Conservation, University of Florida, P.O. Box 110760, Gainesville, FL 32611-0760, USA.
Oecologia (Impact Factor: 3.25). 12/2009; 162(4):923-34. DOI: 10.1007/s00442-009-1524-5
Source: PubMed

ABSTRACT Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.

Download full-text


Available from: Izildinha Souza Miranda, May 22, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the pattern of species diversity and soil factors can enhance our knowledge of the mechanism of vegetation recovery, however, there is still a gap in the knowledge of succession rate and trend for species diversity in relation to soil nutrients during the vegetation recovery process. Patterns of species diversity and soil nutrients during the tropical vegetation recovery as well as the correlation between species diversity and soil nutrients were explored in Hainan Island, located in southern China. Plots assigned as grassland stage (GS), shrub stage (SS), secondary forest stage (SFS), and primary forest stage (PFS) were established using a chronosequence approach. Results showed that species richness and evenness increased from GS to PFS. Species dominance/diversity curves were fitted using the lognormal distribution model (r 2 = 0.891–0.972). Species richness for the herb layer was maximal at SFS, whereas species richness for both the shrub layer and tree layer reached their maximum at PFS. Species turnover and soil total phosphorus decreased, whereas organic matter and total nitrogen increased from GS to PFS. Organic matter and total nitrogen were both positively correlated with species richness and total coverage, and total phosphorus was positively correlated with species turnover. The results clearly demonstrate that diversity asymptotically increases and positively correlates with increasing soil fertility, and the total phosphorus value is predicted to be an important soil factor that affects successional rate during tropical vegetation recovery processes.
    Ecological Research 05/2012; 27(3). DOI:10.1007/s11284-011-0923-3 · 1.51 Impact Factor