Structural biology of S-adenosylmethionine decarboxylase.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
Amino Acids (Impact Factor: 3.65). 12/2009; 38(2):451-60. DOI: 10.1007/s00726-009-0404-y
Source: PubMed

ABSTRACT S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified gene fusions of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from β-proteobacterium Delftia acidovorans and δ-proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α-proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and β-proteobacterium D. acidovorans each produce a different profile of non-native polyamines including sym-norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non-native 1,3-diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N-carbamoylputrescine amidohydrolase in archaea, and of S-adenosylmethionine decarboxylase and ornithine decarboxylase in the single-celled green alga Micromonas.
    Molecular Microbiology 08/2011; 81(4):1109-24. DOI:10.1111/j.1365-2958.2011.07757.x · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we introduce a fixed-point 16-bit 64 point FFT processor architecture for OFDM-based wireless applications. The processor is based on the DIT (decimation-in-time) radix-2 butterfly FFT algorithm. A canonical signed digit is used to implement constant complex multiplications with a CSA tree for lower power and cost. The simulation shows the module can reach low cost/power and high speed for OFDM-based high-speed wireless applications.
    Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on; 11/2004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activity and processing of mammalian S-adenosylmethionine decarboxylase (AdoMetDC) is stimulated by putrescine. To obtain new insights into the mechanism through which putrescine stimulates AdoMetDC, we investigated conformational changes in rat prostate AdoMetDC in the presence or absence of putrescine. We examined the reactivity of purified rat prostate AdoMetDC to the SH-reagent iodoacetic acid (IAA) and its susceptibility to proteolysis in the presence or absence of putrescine using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The activity of AdoMetDC treated with IAA in the absence of putrescine was reduced, but about 80% of its activity remained after treatment with IAA in the presence of putrescine. In the presence of putrescine, IAA incorporation was 1.9 mol IAA/mol of AdoMetDC α-subunit, while there was no incorporation of IAA in the β-subunit of AdoMetDC. In the absence of putrescine, 5.0 mol of IAA/mol of α-subunit and 0.9 mol of IAA/mol of β-subunit were incorporated. Only Cys292 and Cys310 were carboxymethylated by IAA in the presence of putrescine. In contrast, in the absence of putrescine all cysteines were carboxymethylated by IAA. In addition, putrescine slowed the rate of AdoMetDC degradation by trypsin. These results demonstrate that the conformation of AdoMetDC purified from rat prostate is stabilized by putrescine.
    Biological & Pharmaceutical Bulletin 01/2010; 33(11):1800-5. DOI:10.1248/bpb.33.1800 · 1.78 Impact Factor


Available from