Article

Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.

The Computational Medicine Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
PLoS Genetics (Impact Factor: 8.17). 12/2009; 5(12):e1000754. DOI: 10.1371/journal.pgen.1000754
Source: PubMed

ABSTRACT Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue) and atherosclerotic and unaffected arterial wall (n = 40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n = 49/48) and one visceral fat (n = 59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54) relating to carotid stenosis (P = 0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10(-27 and-30)). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the expression of 13 TEML genes in Ldb2-deficient arterial wall. Thus, the A-module appears to be important for atherosclerosis development and, together with LDB2, merits further attention in CAD research.

0 Bookmarks
 · 
235 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics data have identified modules of disease-associated genes that have been used to obtain both a systems level and a molecular understanding of disease mechanisms. For example, in allergy a module was used to find a novel candidate gene that was validated by functional and clinical studies. Such analyses play important roles in systems medicine. This is an emerging discipline that aims to gain a translational understanding of the complex mechanisms underlying common diseases. In this review, we will explain and provide examples of how network-based analyses of omics data, in combination with functional and clinical studies, are aiding our understanding of disease, as well as helping to prioritize diagnostic markers or therapeutic candidate genes. Such analyses involve significant problems and limitations, which will be discussed. We also highlight the steps needed for clinical implementation.
    Genome Medicine 01/2014; 6(10):82. · 4.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have shown that the structure and dynamics of human signaling network are disturbed in complex diseases such as coronary artery disease, and gene expression profiles can distinguish variations in diseases since they can accurately reflect the status of cells. Integration of subcellular localization and human signaling network holds promise for providing insight into human diseases. In this study, we performed a novel algorithm to identify progression-related-disease-risk modules (PRDRMs) among patients of different disease states within eleven subcellular sub-networks from a human signaling network. The functional annotation and literature retrieval showed that the PRDRMs were strongly associated with disease pathogenesis. The results indicated that the PRDRMs expression values as classification features had a good classification performance to distinguish patients of different disease states. Our approach compared with the method PageRank had a better classification performance. The identification of the PRDRMs in response to dynamic gene expression change could facilitate our understanding of the pathological base for complex diseases. Our strategy could provide new insights into potential reveals of prognostic biomarkers and effective guidance of clinical therapy from the human subcellular signaling networks perspective.
    Molecular BioSystems 10/2014; · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal integration between IFNγ and TLRs in immune cells has been associated with the host defense against pathogens and injury, with a predominant role of STAT1. We hypothesize that STAT1-dependent transcriptional changes in vascular cells involved in cross-talk between IFNγ and TLR4, reflect pro-atherogenic responses in human atherosclerosis. Genome-wide investigation identified a set of STAT1-dependent genes that were synergistically affected by interactions between IFNγ and TLR4 in VSMCs. These included the chemokines Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules Cd40, Cd74, and antiviral and antibacterial genes Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Among the amplified genes was also Irf8, of which Ccl5 was subsequently identified as a new pro-inflammatory target in VSMCs and ECs. Promoter analysis predicted transcriptional cooperation between STAT1, IRF1, IRF8 and NFκB, with the novel role of IRF8 providing an additional layer to the overall complexity. The synergistic interactions between IFNγ and TLR4 also resulted in increased T-cell migration and impaired aortic contractility in a STAT1-dependent manner. Expression of the chemokines CXCL9 and CXCL10 correlated with STAT1 phosphorylation in vascular cells in plaques from human carotid arteries. Moreover, using data mining of human plaque transcriptomes, expression of a selection of these STAT1-dependent pro-atherogenic genes was found to be increased in coronary artery disease (CAD) and carotid atherosclerosis. Our study provides evidence to suggest that in ECs and VSMCs STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4, and identifies a STAT1-dependent gene signature that reflects a pro-atherogenic state in human atherosclerosis.
    PLoS ONE 12/2014; 9(12):e113318. · 3.53 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
Jun 4, 2014