Article

Multi-Organ Expression Profiling Uncovers a Gene Module in Coronary Artery Disease Involving Transendothelial Migration of Leukocytes and LIM Domain Binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) Study

The Computational Medicine Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
PLoS Genetics (Impact Factor: 8.17). 12/2009; 5(12):e1000754. DOI: 10.1371/journal.pgen.1000754
Source: PubMed

ABSTRACT Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue) and atherosclerotic and unaffected arterial wall (n = 40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n = 49/48) and one visceral fat (n = 59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54) relating to carotid stenosis (P = 0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10(-27 and-30)). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the expression of 13 TEML genes in Ldb2-deficient arterial wall. Thus, the A-module appears to be important for atherosclerosis development and, together with LDB2, merits further attention in CAD research.

Download full-text

Full-text

Available from: Eric Schadt, Jun 17, 2015
0 Followers
 · 
293 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have been extensively used to study common complex diseases such as coronary artery disease (CAD), revealing 153 suggestive CAD loci, of which at least 46 have been validated as having genome-wide significance. However, these loci collectively explain <10% of the genetic variance in CAD. Thus, we must address the key question of what factors constitute the remaining 90% of CAD heritability. We review possible limitations of GWAS, and contextually consider some candidate CAD loci identified by this method. Looking ahead, we propose systems genetics as a complementary approach to unlocking the CAD heritability and etiology. Systems genetics builds network models of relevant molecular processes by combining genetic and genomic datasets to ultimately identify key "drivers" of disease. By leveraging systems-based genetic approaches, we can help reveal the full genetic basis of common complex disorders, enabling novel diagnostic and therapeutic opportunities. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
    Journal of the American College of Cardiology 03/2015; 65(8):830-845. DOI:10.1016/j.jacc.2014.12.033 · 15.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TWIST proteins are important for development of embryonic skeletal muscle and play a role in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, overexpression of Twist reduced total glycogen content without altering glucose uptake. Expression of TWIST1 or TWIST2 reduced Pdk4 mRNA, while increasing mRNA levels of Il6, Tnfα, and Il1β. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered in ob/ob mice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines. However, skeletal muscle levels of TWIST transcripts are unaltered in metabolic diseases. © 2015 Society for Endocrinology.
    Journal of Endocrinology 03/2015; 224(3):303-13. DOI:10.1530/JOE-14-0474 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statin therapy plays a pivotal role in stabilizing the plaque for unstable angina (UA) patients although its mechanism(s) remains largely unexplored. Here we aim to identify microRNAs (miRNAs) mediating the protective effect of statins in UA patients. MiRNAs Array was carried out to compare the circulating whole blood miRNA profile of UA patients treated with (n = 10) and without statin (n = 10) and plasma miRNA profile UA patients treated with (n = 5) and without statin (n = 5). 22 whole blood miRNAs and 19 plasma miRNAs were found significantly upregulated in statin group. Targets of these miRNAs were predicted by algoritms: Targetscan, Miranda and Diana microT, then clustered according to functions and cell types by using the Database for Annotation, Visualization and Integrated Discovery(DAVID. To reveal the enriched function pathways in human atherosclerotic plaque, we analyzed microarray data from GEO database, Coronary atherosclerotic plaque (n = 80); macrophages in ruptured plaque (n = 11); carotid atheroma plaque (n = 64); advanced carotid atherosclerotic plaque (n = 29) using Reactome database. Integrated analysis indicated that statin induced miRNAs mainly regulate the signaling pathways of Rho GTPase and hemostasis in human atherosclerotic lesion. In vulnerable plaque, additional immune system signaling was also targeted. The data showed target genes regulated by these statin induced miRNAs majorly expressed in i) plaque macrophage and platelet, where they were involved in hemostasis process; ii) in monocyte to regulate NGF apoptosis; iii) and in endothelial cell function in Rho GTPase pathway. Integrate analysis indicated that statin induced miRNAs mainly regulate the signaling pathways of Rho GTPase and hemostasis in human atherosclerotic lesion. Our study suggest that statin induces the expression of multiple miRNAs in the circulation of UA patient, which play important roles by regulating signal pathways critical for the pathogenesis of UA.
    BMC Medical Genomics 12/2015; 8(1):82. DOI:10.1186/s12920-015-0082-4 · 3.91 Impact Factor