Article

mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling.

Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
Molecular and Cellular Biology (Impact Factor: 5.04). 12/2009; 30(4):908-21. DOI: 10.1128/MCB.00601-09
Source: PubMed

ABSTRACT The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3 alpha/beta (GSK3 alpha/beta) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.

0 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.
    Journal of Clinical Investigation 01/2015; 125(1):25-32. DOI:10.1172/JCI73939 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which the drug rapamycin inhibits the mechanistic target of rapamycin (mTOR) is of intense interest because of its likely relevance in cancer biology, aging, and other age-related diseases. While rapamycin acutely and directly inhibits mTORC1, only chronic administration of rapamycin can inhibit mTORC2 in some, but not all, cell lines or tissues. The mechanism leading to cell specificity of mTORC2 inhibition by rapamycin is not understood and is especially important because many of the negative metabolic side effects of rapamycin, reported in mouse studies and human clinical trials, have been attributed recently to mTORC2 inhibition. Here, we identify the expression level of different FK506-binding proteins (FKBPs), primarily FKBP12 and FKBP51, as the key determinants for rapamycin-mediated inhibition of mTORC2. In support, enforced reduction of FKBP12 completely converts a cell line that is sensitive to mTORC2 inhibition to an insensitive cell line, and increased expression can enhance mTORC2 inhibition. Further reduction of FKBP12 in cell lines with already low FKBP12 levels completely blocks mTORC1 inhibition by rapamycin, indicating that relative FKBP12 levels are critical for both mTORC1 and mTORC2 inhibition, but at different levels. In contrast, reduction of FKBP51 renders cells more sensitive to mTORC2 inhibition. Our findings reveal that the expression of FKBP12 and FKBP51 is the rate limiting factor that determines the responsiveness of a cell line or tissue to rapamycin. These findings have implications for treating specific diseases, including neurodegeneration and cancer, as well as targeting aging in general. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
    Aging Cell 02/2015; 14(2). DOI:10.1111/acel.12313 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic/mammalian target of rapamycin (mTOR) is a conserved protein kinase that controls several anabolic processes required for cell growth and proliferation. As such, mTOR has been implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes and neurodegeneration. As part of the mTOR complex 1 (mTORC1), mTOR regulates cell growth by promoting the biosynthesis of proteins, lipids and nucleic acids. Several mTORC1 substrates have been shown to regulate protein synthesis, including the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and the ribosomal S6 kinases (S6Ks) 1 and 2. In this work, we focus on the signalling pathways that lie both upstream and downstream of mTORC1, as well as their relevance to human pathologies. We further discuss pharmacological approaches that target mTOR and their applications for the treatment of cancer. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Mutagenesis 03/2015; 30(2):169-176. DOI:10.1093/mutage/geu045 · 3.50 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
Sep 5, 2014