Van Rompay, KK, Abel, K, Earl, P, Kozlowski, PA, Easlick, J, Moore, J et al.. Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV. Vaccine 28: 1481-1492

California National Primate Research Center, University of California Davis, Davis, CA 95616, United States.
Vaccine (Impact Factor: 3.62). 12/2009; 28(6):1481-92. DOI: 10.1016/j.vaccine.2009.11.061
Source: PubMed


In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model.

Download full-text


Available from: Kimberli A Schmidt,
  • Source
    • "Intracellular cytokine production was assessed via multiparameter flow cytometry from fresh PBMC and lymphoid cells after stimulation with SIV antigens as reported previously [73]. Briefly, 1x106 cells per tube were stimulated with 300 ng/mL aldrithiol-2 (AT-2)-inactivated whole SIVmac239 (provided by Dr. J. Lifson, NCI) or with 5 μg/mL of a pool of overlapping 15-mer peptides spanning the SIVgag p27 protein (provided by the NIH Reference and Reagent Program). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
    Retrovirology 07/2012; 9(1):57. DOI:10.1186/1742-4690-9-57 · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of vacuum arc processes including the cathode and anode phenomena with cold and hot electrodes as well as the processes in interelectrode plasma is presented. In the case of cold electrodes, the current continuity mechanism, the nature of mass loss, spot motion, plasma jet generation in the spots and the cathode potential drop are reviewed. The explosive and gas-dynamical models of cathode spot operation are described. In the case of hot electrodes, the diffuse current continuity mechanism is analyzed. The present state of electrical and plasma characteristics of high current arcs in magnetic fields are discussed
    Discharges and Electrical Insulation in Vacuum, 2000. Proceedings. ISDEIV. XIXth International Symposium on; 02/2000
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncolytic viruses (OVs) are highly immunogenic and this limits their use in immune-competent hosts. Although immunosuppression may improve viral oncolysis, this gain is likely achieved at the cost of antitumoral immunity. We have developed a strategy wherein the immune response against the OV leads to enhanced therapeutic outcomes. We demonstrate that immunization with an adenoviral (Ad) vaccine before treatment with an oncolytic vesicular stomatitis virus (VSV) expressing the same tumor antigen (Ag) leads to significantly enhanced antitumoral immunity. Intratumoral replication of VSV was minimally attenuated in Ad-immunized hosts but extending the interval between treatments reduced the attenuating effect and further increased antitumoral immunity. More importantly, our combination approach shifted the immune response from viral Ags to tumor Ags and further reduced OV replication in normal tissues, leading to enhancements in both efficacy and safety. These studies also highlight the benefits of using a replicating, OV to boost a pre-existing antitumoral immune response as this approach generated larger responses versus tumor Ag in tumor-bearing hosts than could be achieved in tumor-free hosts. This strategy should be applicable to other vector combinations, tumor Ags, and tumor targets.
    Molecular Therapy 08/2010; 18(8):1430-9. DOI:10.1038/mt.2010.98 · 6.23 Impact Factor
Show more