Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV.

California National Primate Research Center, University of California Davis, Davis, CA 95616, United States.
Vaccine (Impact Factor: 3.77). 12/2009; 28(6):1481-92. DOI: 10.1016/j.vaccine.2009.11.061
Source: PubMed

ABSTRACT In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
    Retrovirology 07/2012; 9:57. · 5.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
    Immunological Reviews 07/2013; 254(1):34-53. · 12.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.
    Current opinion in HIV and AIDS 09/2013; 8(5):401-10. · 4.75 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014