Article

Genomic microsatellites identify shared Jewish ancestry intermediate between Middle Eastern and European populations.

Porter School of Environmental Studies, Department of Zoology, Tel Aviv University, Ramat Aviv, Israel.
BMC Genetics (Impact Factor: 2.36). 12/2009; 10:80. DOI: 10.1186/1471-2156-10-80
Source: PubMed

ABSTRACT Genetic studies have often produced conflicting results on the question of whether distant Jewish populations in different geographic locations share greater genetic similarity to each other or instead, to nearby non-Jewish populations. We perform a genome-wide population-genetic study of Jewish populations, analyzing 678 autosomal microsatellite loci in 78 individuals from four Jewish groups together with similar data on 321 individuals from 12 non-Jewish Middle Eastern and European populations.
We find that the Jewish populations show a high level of genetic similarity to each other, clustering together in several types of analysis of population structure. Further, Bayesian clustering, neighbor-joining trees, and multidimensional scaling place the Jewish populations as intermediate between the non-Jewish Middle Eastern and European populations.
These results support the view that the Jewish populations largely share a common Middle Eastern ancestry and that over their history they have undergone varying degrees of admixture with non-Jewish populations of European descent.

0 Bookmarks
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microsatellites[box drawings light horizontal]contiguous arrays of 2-6 base-pair motifs[box drawings light horizontal]have formed the cornerstone of population-genetic studies for over two decades. Their genotype data typically takes the form of PCR fragment lengths obtained using locus-specific primer pairs to amplify the genomic region encompassing the microsatellite. Recently, we reported a dataset of 5,795 human and 84 chimpanzee individuals with genotypes at 246 human-derived autosomal microsatellites as a resource to facilitate interspecies comparisons. A major assumption underlying this dataset is that PCR amplicons at orthologous microsatellites are commensurable between species. We find this assumption to be frequently incorrect owing to discordance in microsatellite organization and variability, as well as nontrivial length imbalances caused by small species-specific indels in microsatellite flanking sequences. Converting PCR fragment lengths into the repeat numbers they represent at 138 microsatellites whose organization and variability was found to be highly similar in both species, we show that interspecies incommensurability among PCR amplicons can inflate FST and DPS estimates by up to 10.6%. Separate investigations of determinants of microsatellite variability in humans and chimpanzees uncover similar patterns with mean and maximum numbers of repeats, as well as numbers and ranges of distinct alleles, all important factors in predicting heterozygosity. In contrast, across microsatellites, numbers of repeats were significantly smaller in chimpanzees than in humans, while numbers and ranges of distinct alleles were instead larger. Our findings have fundamental implications for interspecies comparisons using microsatellites and offer new opportunities for more accurate comparisons of patterns of human and chimpanzee genetic variation in numerous areas of application.
    BMC Genomics 11/2014; 15(1):990. DOI:10.1186/1471-2164-15-990 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first documents mentioning Jewish people in Iberia are from the Visigothic period. It was also in this period that the first documented anti-Judaic persecution took place. Other episodes of persecution would happen again and again during the long troubled history of the Jewish people in Iberia and culminated with the Decrees of Expulsion and the establishment of the Inquisition: some Jews converted to Catholicism while others resisted and were forcedly baptized, becoming the first Iberian Crypto-Jews. In the 18th century the official discrimination and persecution carried out by the Inquisition ended and several Jewish communities emerged in Portugal. From a populational genetics point of view, the worldwide Diaspora of contemporary Jewish communities has been intensely studied. Nevertheless, very little information is available concerning Sephardic and Iberian Crypto-Jewish descendants. Data from the Iberian Peninsula, the original geographic source of Sephardic Jews, is limited to two populations in Portugal, Belmonte, and Bragança district, and the Chueta community from Mallorca. Belmonte was the first Jewish community studied for uniparental markers. The construction of a reference model for the history of the Portuguese Jewish communities, in which the genetic and classical historical data interplay dynamically, is still ongoing. Recently an enlarged sample covering a wide region in the Northeast Portugal was undertaken, allowing the genetic profiling of male and female lineages. A Jewish specific shared female lineage (HV0b) was detected between the community of Belmonte and Bragança. In contrast to what was previously described as a hallmark of the Portuguese Jews, an unexpectedly high polymorphism of lineages was found in Bragança, showing a surprising resistance to the erosion of genetic diversity typical of small-sized isolate populations, as well as signs of admixture with the Portuguese host population.
    Frontiers in Genetics 01/2015; 6:12. DOI:10.3389/fgene.2015.00012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contemporary Jews retain a genetic imprint from their Near Eastern ancestry, but obtained substantial genetic components from their neighboring populations during their history. Whether they received any genetic contribution from the Far East remains unknown, but frequent communication with the Chinese has been observed since the Silk Road period. To address this issue, mitochondrial DNA (mtDNA) variation from 55,595 Eurasians are analyzed. The existence of some eastern Eurasian haplotypes in eastern Ashkenazi Jews supports an East Asian genetic contribution, likely from Chinese. Further evidence indicates that this connection can be attributed to a gene flow event that occurred less than 1.4 kilo-years ago (kya), which falls within the time frame of the Silk Road scenario and fits well with historical records and archaeological discoveries. This observed genetic contribution from Chinese to Ashkenazi Jews demonstrates that the historical exchange between Ashkenazim and the Far East was not confined to the cultural sphere but also extended to an exchange of genes.
    Scientific Reports 02/2015; 5:8377. DOI:10.1038/srep08377 · 5.08 Impact Factor

Full-text (3 Sources)

Download
40 Downloads
Available from
Jun 5, 2014