Article

Genomic microsatellites identify shared Jewish ancestry intermediate between Middle Eastern and European populations

Porter School of Environmental Studies, Department of Zoology, Tel Aviv University, Ramat Aviv, Israel.
BMC Genetics (Impact Factor: 2.36). 12/2009; 10(1):80. DOI: 10.1186/1471-2156-10-80
Source: PubMed

ABSTRACT Genetic studies have often produced conflicting results on the question of whether distant Jewish populations in different geographic locations share greater genetic similarity to each other or instead, to nearby non-Jewish populations. We perform a genome-wide population-genetic study of Jewish populations, analyzing 678 autosomal microsatellite loci in 78 individuals from four Jewish groups together with similar data on 321 individuals from 12 non-Jewish Middle Eastern and European populations.
We find that the Jewish populations show a high level of genetic similarity to each other, clustering together in several types of analysis of population structure. Further, Bayesian clustering, neighbor-joining trees, and multidimensional scaling place the Jewish populations as intermediate between the non-Jewish Middle Eastern and European populations.
These results support the view that the Jewish populations largely share a common Middle Eastern ancestry and that over their history they have undergone varying degrees of admixture with non-Jewish populations of European descent.

Download full-text

Full-text

Available from: Naama Meira Kopelman, Jul 29, 2015
0 Followers
 · 
123 Views
  • Source
    • "However , a pragmatic approach to available methods regards genuine STRUCTURE multimodality as a regular feature of the analysis that can be used to assist with biological interpretations (e.g. Rosenberg et al. 2001a; Wang et al. 2007; Kopelman et al. 2009). Especially for complex data sets, different modes for a given data set can reflect the existence of population groupings that are comparably supported (Pritchard et al. 2000), so that exploration of multiple modes contributes information to an analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of the genetic structure of populations from multilocus genotype data has become a central component of modern population-genetic data analysis. Application of model-based clustering programs often entails a number of steps, in which the user considers different modeling assumptions, compares results across different pre-determined values of the number of assumed clusters (a parameter typically denoted K), examines multiple independent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering solutions. Here, we present Clumpak (Cluster Markov Packager Across K), a method that automates the post-processing of results of model-based population structure analyses. For analyzing multiple independent runs at a single K value, Clumpak identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as computed by the software Clumpp. Next, Clumpak identifies an optimal alignment of inferred clusters across different values of K, extending a similar approach implemented for a fixed K in Clumpp, and simplifying the comparison of clustering results across different K values. Clumpak incorporates additional features, such as implementations of methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Molecular Ecology Resources 02/2015; DOI:10.1111/1755-0998.12387 · 5.63 Impact Factor
  • Source
    • "The genetic heritage of Jewish populations has been deeply scrutinized at the population level as well as for the medical implications, using uniparental and autosomal markers (Hammer et al., 2000; Ostrer, 2001; Bauchet et al., 2007; Adams et al., 2008; Behar et al., 2008; Olshen et al., 2008; Kopelman et al., 2009; Elhaik, 2013) and more recently through genome-wide approaches (Seldin et al., 2006; Atzmon et al., 2010; Behar et al., 2010; Campbell et al., 2012; Velez et al., 2012; Ostrer and Skorecki, 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The first documents mentioning Jewish people in Iberia are from the Visigothic period. It was also in this period that the first documented anti-Judaic persecution took place. Other episodes of persecution would happen again and again during the long troubled history of the Jewish people in Iberia and culminated with the Decrees of Expulsion and the establishment of the Inquisition: some Jews converted to Catholicism while others resisted and were forcedly baptized, becoming the first Iberian Crypto-Jews. In the 18th century the official discrimination and persecution carried out by the Inquisition ended and several Jewish communities emerged in Portugal. From a populational genetics point of view, the worldwide Diaspora of contemporary Jewish communities has been intensely studied. Nevertheless, very little information is available concerning Sephardic and Iberian Crypto-Jewish descendants. Data from the Iberian Peninsula, the original geographic source of Sephardic Jews, is limited to two populations in Portugal, Belmonte, and Bragança district, and the Chueta community from Mallorca. Belmonte was the first Jewish community studied for uniparental markers. The construction of a reference model for the history of the Portuguese Jewish communities, in which the genetic and classical historical data interplay dynamically, is still ongoing. Recently an enlarged sample covering a wide region in the Northeast Portugal was undertaken, allowing the genetic profiling of male and female lineages. A Jewish specific shared female lineage (HV0b) was detected between the community of Belmonte and Bragança. In contrast to what was previously described as a hallmark of the Portuguese Jews, an unexpectedly high polymorphism of lineages was found in Bragança, showing a surprising resistance to the erosion of genetic diversity typical of small-sized isolate populations, as well as signs of admixture with the Portuguese host population.
    Frontiers in Genetics 01/2015; 6:12. DOI:10.3389/fgene.2015.00012
  • Source
    • "Yiddish, the language of Central and Eastern European Jews, began as a Slavic language that was re-lexified to High German at an early date (Wexler 1993). Our findings are also in agreement with genetic, archeological, historical, linguistic, and anthropological studies and reconcile contradicting genetic findings regarding European Jewish ancestry (Polak 1951; Patai and Patai 1975; Wexler 1993; Brook 2006; Kopelman et al. 2009; Sand 2009). Finally, our findings confirm both oral narratives and the canonical Jewish literature describing the Khazar's conversion to Judaism and the Judeo- Khazarian ancestry of European Jews (e.g., " Sefer ha-Ittim " by Rabbi Jehudah ben Barzillai [1100] , " Sefer ha-Kabbalah " by Abraham ben Daud [1161 CE], and " The Khazars " by Rabbi Jehudah Halevi [1140 CE]) (Polak 1951; Koestler 1976). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The question of Jewish ancestry has been the subject of controversy for over two centuries and has yet to be resolved. The "Rhineland Hypothesis" depicts Eastern European Jews as a "population isolate" that emerged from a small group of German Jews who migrated eastward and expanded rapidly. Alternatively, the "Khazarian Hypothesis" suggests that Eastern European Jew descended from the Khazars, an amalgam of Turkic clans that settled the Caucasus in the early centuries CE and converted to Judaism in the 8(th) century. Mesopotamian and Greco-Roman Jews continuously reinforced the Judaized Empire until the 13(th) century. Following the collapse of their empire, the Judeo-Khazars fled to Eastern Europe. The rise of European Jewry is therefore explained by the contribution of the Judeo-Khazars. Thus far, however, the Khazar's contribution has been estimated only empirically, as the absence of genome-wide data from Caucasus populations precluded testing the Khazarian Hypothesis. Recent sequencing of modern Caucasus populations prompted us to revisit the Khazarian Hypothesis and compare it with the Rhineland Hypothesis. We applied a wide range of population genetic analyses to compare these two hypotheses. Our findings support the Khazarian Hypothesis and portray the European Jewish genome as a mosaic of Caucasus, European, and Semitic ancestries, thereby consolidating previous contradictory reports of Jewish ancestry. We further describe major difference among Caucasus populations explained by early presence of Judeans in the Southern and Central Caucasus. Our results have important implications on the demographic forces that shaped the genetic diversity in the Caucasus and medical studies.
    Genome Biology and Evolution 12/2012; 5(1). DOI:10.1093/gbe/evs119 · 4.53 Impact Factor
Show more