Transgenic Drosophila models of Alzheimer's disease and tauopathies.

Laboratory of Neurogenetics and Pathobiology, Department of Biochemistry and Molecular Biology, Farber Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, JHN410, Philadelphia, PA, 19107, USA.
Brain Structure and Function (Impact Factor: 7.84). 12/2009; 214(2-3):245-62. DOI: 10.1007/s00429-009-0234-4
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is the most common form of senile dementia. Aggregation of the amyloid-beta42 peptide (Abeta42) and tau proteins are pathological hallmarks in AD brains. Accumulating evidence suggests that Abeta42 plays a central role in the pathogenesis of AD, and tau acts downstream of Abeta42 as a modulator of the disease progression. Tau pathology is also observed in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and other related diseases, so called tauopathies. Although most cases are sporadic, genes associated with familial AD and FTDP-17 have been identified, which led to the development of transgenic animal models. Drosophila has been a powerful genetic model system used in many fields of biology, and recently emerges as a model for human neurodegenerative diseases. In this review, we will summarize key features of transgenic Drosophila models of AD and tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from these models.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tauopathies are a group of neurodegenerative disorders characterised by altered levels of phosphorylation or mutations in the neuronal microtubule protein Tau. The heterogeneous pathology of tauopathies suggests differential susceptibility of different neuronal types to wild-type and mutant Tau. The genetic power and facility of the Drosophila model has been instrumental in exploring the molecular aetiologies of tauopathies, identifying additional proteins likely contributing to neuronal dysfunction and toxicity and novel Tau phosphorylations mediating them. Importantly, recent results indicate tissue- and temporal-specific effects on dysfunction and toxicity coupled with differential effects of distinct Tau isoforms within them. Therefore, they reveal an unexpected richness of the Drosophila model that, coupled with its molecular genetic power, will likely play a significant role in our understanding of multiple tauopathies potentially leading to their differential treatment.
    Molecular Neurobiology 06/2011; 44(1):122-33. · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid-β-42 (Aβ42) has been implicated in the pathogenesis of Alzheimer's disease (AD). Neuronal Aβ42 expression induces apoptosis and decreases survival and locomotive activity in Drosophila. However, the mechanism by which Aβ42 induces these neuronal impairments is unclear. In this study, we investigated the underlying pathway in theses impairments. JNK activity was increased in Aβ42-expressing brains, and the Aβ42-induced defects were rescued by reducing JNK or caspase activity through genetic modification or pharmacological treatment. In addition, these impairments were restored by Drosophila forkhead box subgroup O (dFOXO) deficiency. These results suggest that the JNK/dFOXO pathway confers a therapeutic potential for AD.
    Biochemical and Biophysical Research Communications 03/2012; 419(1):49-53. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although β-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.
    Neurobiology of Disease 01/2012; 46(1):78-87. · 5.62 Impact Factor


1 Download
Available from