An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos.

Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
Nature Cell Biology (Impact Factor: 20.06). 12/2009; 12(1):60-5; sup pp 1-9. DOI: 10.1038/ncb2005
Source: PubMed

ABSTRACT Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the relationship between classical cadherin binding affinities and mechanotransduction through cadherin-mediated adhesions. The mechanical properties of cadherin-dependent intercellular junctions are generally attributed to differences in the binding affinities of classical cadherin subtypes that contribute to cohesive energies between cells. However, cell mechanics and mechanotransduction may also regulate intercellular contacts. Here, micropipette measurements quantified the two-dimensional affinities of cadherins at the cell surface, and two complementary mechanical measurements assessed ligand-dependent mechanotransduction through cadherin adhesions. At the cell surface, the classical cadherins investigated in this study form both homophilic and heterophilic bonds with two-dimensional affinities that differ by less than three fold. In contrast, mechanotransduction via cadherin adhesions is strongly ligand-dependent such that homophilic, but not heterophilic ligation mediates mechanotransduction, independent of the cadherin binding affinity. These findings suggest that ligand-selective mechanotransduction may supersede differences in cadherin binding affinities in regulating intercellular contacts.
    Journal of Cell Science 06/2012; 125(18). DOI:10.1242/jcs.105775 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subdivision of proliferating tissues into adjacent compartments that do not mix plays a key role in animal development. The Actin cytoskeleton has recently been shown to mediate cell sorting at compartment boundaries, and reduced cell proliferation in boundary cells has been proposed as a way of stabilizing compartment boundaries. Cell interactions mediated by the receptor Notch have been implicated in the specification of compartment boundaries in vertebrates and in Drosophila, but the molecular effectors remain largely unidentified. Here, we present evidence that Notch mediates boundary formation in the Drosophila wing in part through repression of bantam miRNA. bantam induces cell proliferation and we have identified the Actin regulator Enabled as a new target of bantam. Increased levels of Enabled and reduced proliferation rates contribute to the maintenance of the dorsal-ventral affinity boundary. The activity of Notch also defines, through the homeobox-containing gene cut, a distinct population of boundary cells at the dorsal-ventral (DV) interface that helps to segregate boundary from non-boundary cells and contributes to the maintenance of the DV affinity boundary.
    Development 09/2011; 138(17):3781-9. DOI:10.1242/dev.064774 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell rearrangements shape the Drosophila embryo via spatially regulated changes in cell shape and adhesion. We show that Bazooka/Par-3 (Baz) is required for the planar polarized distribution of myosin II and adherens junction proteins and polarized intercalary behavior is disrupted in baz mutants. The myosin II activator Rho-kinase is asymmetrically enriched at the anterior and posterior borders of intercalating cells in a pattern complementary to Baz. Loss of Rho-kinase results in expansion of the Baz domain, and activated Rho-kinase is sufficient to exclude Baz from the cortex. The planar polarized distribution of Baz requires its C-terminal domain. Rho-kinase can phosphorylate this domain and inhibit its interaction with phosphoinositide membrane lipids, suggesting a mechanism by which Rho-kinase could regulate Baz association with the cell cortex. These results demonstrate that Rho-kinase plays an instructive role in planar polarity by targeting Baz/Par-3 and myosin II to complementary cortical domains.
    Developmental Cell 09/2010; 19(3):377-88. DOI:10.1016/j.devcel.2010.08.011 · 10.37 Impact Factor