Microfluidic in vivo Screen Identifies Compounds Enhancing Neuronal Regeneration

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 01/2009; 2009:5950-2. DOI: 10.1109/IEMBS.2009.5334771
Source: PubMed


Compound screening is a powerful tool to identify new therapeutic targets, drug leads, and elucidate the fundamental mechanisms of biological processes. We report here the results of the first in vivo small-molecule screens for compounds enhancing neuronal regeneration. These screens are enabled by the microfluidic devices we have developed for C. elegans. The devices enable rapid and repeatable animal immobilization which allows high-throughput and precise surgery. Following surgery, animals are exposed to the contents of a small-molecule library and assayed for neuronal regeneration. Using this screening method we have identified several compounds that enhance neural regeneration in vivo.

Download full-text


Available from: Chrysanthi Samara, Aug 16, 2014
13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.
    Traffic 12/2010; 12(4):372-85. DOI:10.1111/j.1600-0854.2010.01157.x · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine is an ancient signaling molecule. It is responsible for maintaining the adaptability of behavioral outputs and is found across taxa. The following is a summary of the role of dopamine and the mechanisms of its function and dysfunction. We discuss our recent findings on dopaminergic control of behaviors in C. elegans and discuss its potential implications for work in the fields of C. elegans and Parkinson research.
    Communicative & integrative biology 09/2012; 5(5):440-7. DOI:10.4161/cib.20978
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to several inherent advantages, zebrafish are being utilized in increasingly sophisticated screens to assess the physiological effects of chemical compounds directly in living vertebrate organisms. Diverse screening platforms showcase these advantages. Morphological assays encompassing basic qualitative observations to automated imaging, manipulation, and data-processing systems provide whole organism to subcellular levels of detail. Behavioral screens extend chemical screening to the level of complex systems. In addition, zebrafish-based disease models provide a means of identifying new potential therapeutic strategies. Automated systems for handling/sorting, high-resolution imaging and quantitative data collection have significantly increased throughput in recent years. These advances will make it easier to capture multiple streams of information from a given sample and facilitate integration of zebrafish at the earliest stages of the drug-discovery process, providing potential solutions to current drug-development bottlenecks. Here we outline advances that have been made within the growing field of zebrafish chemical screening.
    Future medicinal chemistry 09/2012; 4(14):1811-22. DOI:10.4155/fmc.12.115 · 3.74 Impact Factor
Show more