A Multimodal Sensing Device for Fluorescence Imaging and Electrical Potential Measurement of Neural Activities in a Mouse Deep Brain

Graduate School of Materials Science, Nara Institute of Science and Technology, and JST, CREST, Ikoma, Nara 630-0101, Japan.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 01/2009; 2009:5887-90. DOI: 10.1109/IEMBS.2009.5334461
Source: PubMed

ABSTRACT We have developed a multimodal CMOS sensing device to detect fluorescence image and electrical potential for neural activities in a mouse deep brain. The device consists of CMOS image sensor with on-chip electrodes and excitation light sources, all of which are integrated on a polyimide substrate. The novel feature of this device is its embedded on-chip electrodes which are partially transmit incident light so that the whole image can be acquired by the sensor. We have demonstrated the CMOS sensor device successfully operates in hippocampus area of an anesthetized mouse.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed an implantable one-chip biofluoroimaging device (termed biomedical photonic LSI; BpLSI) which enabled real-time molecular imaging with conventional electrophysiology in vivo in deep brain areas. The multimodal LSI enabled long-term sequential imaging of the fluorescence emitted by proteolysis-linked fluorogenic substrate. Using the BpLSI, we observed a process of stimulation-dependent modulation at synapse with multi-site (16 x 19 pixel) in widespread area and a high-speed video rate, and found that the gradual up-regulated proteolytic activity in a wide range of hippocampal CA1 area and the steep activity in local area, indicating that the proteolysis system is a basis for the fixation of long-term potentiation in post-excited synapses in the hippocampus. Mathematical data analysis confirmed the direct involvement of functional proteolysis for neural plasticity.
    Journal of Neuroscience Methods 07/2008; 173(1):114-20. DOI:10.1016/j.jneumeth.2008.06.002 · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed two CMOS devices to demonstrate the use of CMOS technology for neural imaging and interfacing with the aim of studying the functions of the brain at the molecular level. In this work, we discuss the design, packaging, and implementation of a compact, single device imaging system for imaging inside the mouse brain. We show that the device is capable of imaging and measuring fluorophore concentrations down to 1 mum . The packaged device was tested for in vivo fluorescence imaging by imaging the activity of serine protease in the mouse hippocampus. The result shows imaging of neural activity with spatial resolution close to the pixel size of 7.5 mum and less than 300 ms temporal resolution. A second device was developed to image neuronal network activity and to provide a means for electrical interfacing with neurons. Characterization tests show that the device has comparable performance to current tools used in electrophysiological experiments of the brain. This work paves the way for simultaneous imaging and electrophysiological experiments using a single compact and minimally invasive device in the future.
    IEEE Sensors Journal 02/2008; DOI:10.1109/JSEN.2007.912921 · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.
    Journal of Neuroscience Methods 10/2006; 156(1-2):23-30. DOI:10.1016/j.jneumeth.2006.02.005 · 1.96 Impact Factor