Linear and nonlinear quantification of respiratory sinus arrhythmia during propofol general anesthesia.

Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 01/2009; 2009:5336-9. DOI:10.1109/IEMBS.2009.5332693 In proceeding of: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Source: PubMed

ABSTRACT Quantitative evaluation of respiratory sinus arrhythmia (RSA) may provide important information in clinical practice of anesthesia and postoperative care. In this paper, we apply a point process method to assess dynamic RSA during propofol general anesthesia. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by a linear or bilinear bivariate regression on the previous R-R intervals and respiratory measures. The estimated second-order bilinear interaction allows us to evaluate the nonlinear component of the RSA. The instantaneous RSA gain and phase can be estimated with an adaptive point process filter. The algorithm's ability to track non-stationary dynamics is demonstrated using one clinical recording. Our proposed statistical indices provide a valuable quantitative assessment of instantaneous cardiorespiratory control and heart rate variability (HRV) during general anesthesia.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Heart rate variability (HRV) has been observed to decrease during anesthesia, but changes in HRV during loss and recovery of consciousness have not been studied in detail. In this study, HRV dynamics during low-dose propofol (N = 10) and dexmedetomidine (N = 9) anesthesia were estimated by using time-varying methods. Standard time-domain and frequency-domain measures of HRV were included in the analysis. Frequency-domain parameters like low frequency (LF) and high frequency (HF) component powers were extracted from time-varying spectrum estimates obtained with a Kalman smoother algorithm. The Kalman smoother is a parametric spectrum estimation approach based on time-varying autoregressive (AR) modeling. Prior to loss of consciousness, an increase in HF component power indicating increase in vagal control of heart rate (HR) was observed for both anesthetics. The relative increase of vagal control over sympathetic control of HR was overall larger for dexmedetomidine which is in line with the known sympatholytic effect of this anesthetic. Even though the inter-individual variability in the HRV parameters was substantial, the results suggest the usefulness of HRV analysis in monitoring dexmedetomidine anesthesia.
    Annals of biomedical engineering 03/2012; 40(8):1802-13. · 2.41 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present a comprehensive probabilistic point process framework to estimate and monitor the instantaneous heartbeat dynamics as related to specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (BRS), can be rigorously derived within a parametric framework and instantaneously updated with an adaptive algorithm. Instantaneous metrics of nonlinearity, such as the bispectrum of heartbeat intervals, can also be derived. We have applied the proposed point process framework to experimental recordings from healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. Results reveal interesting dynamic trends across different pharmacological interventions, confirming the ability of the algorithm to track important changes in cardiorespiratory elicited interactions, and pointing at our mathematical approach as a promising monitoring tool for an accurate, noninvasive assessment of general anesthesia.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:8444-7.
  • [show abstract] [hide abstract]
    ABSTRACT: Anesthesia is a vital and important part of any surgical practice and allows doctors to operate safely and painlessly on a patients. The wide variety of available anesthetics allows anesthesiologists to select the most suitable type of anesthesia and anesthetic drug for a patient. Providing balanced anesthesia by testing the depth of anesthesia (DOA) is a way to know sudden awareness or increasing level of anesthesia during a surgery. In this paper, we present several methods to analyze the results of our experiments performed on 33 patients under coronary vessel surgery. In the first method, by applying the wavelet transform on EEG signal, a new index (namely WAI) is obtained, which shows the conscious level of the patient. In the second method, 10 features related to EEG signal during 10 second windows, such as, edge frequency, and beta ratio, are extracted and used by neural and neuro-fuzzy networks as inputs. Then, the value of DOA is calculated for each of the used algorithms. The correlation value of these methods, which is a criterion of the accuracy, is shown by the BIS monitor output. Simulation results show that the highest amount of correlation is achieved using neural networks with respect to BIS index.


Available from