Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana

Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Journal of plant physiology (Impact Factor: 2.77). 12/2009; 167(7):571-7. DOI: 10.1016/j.jplph.2009.11.004
Source: PubMed

ABSTRACT NAC proteins comprise one of the largest families of transcription factors in the plant genome. They are known to be involved in various aspects of plant development, but the functions of most of them have not yet been determined. ANAC036, a member of the Arabidopsis NAC transcription factor family, contains unique sequences that are conserved among various NAC proteins found in other plant species. Expression analysis of the ANAC036 gene indicated that this gene was strongly expressed in leaves. Transgenic plants overexpressing the ANAC036 gene showed a semidwarf phenotype. The lengths of leaf blades, petioles and stems of these plants were smaller than those in wild-type plants. Microscopy revealed that cell sizes in leaves and stems of these plants were smaller than those in wild-type plants. These findings suggested that ANAC036 and its orthologues are involved in the growth of leaf cells.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineering C4 photosynthetic metabolism into C3 crops is regarded as a major strategy to increase crop productivity, and clarification of the evolutionary processes of C4 photosynthesis can help the better use of this strategy. Here, Eleocharis baldwinii, a species in which C4 photosynthesis can be induced from a C3 -C4 state under either environmental or ABA treatments, was used to identify the major transcriptional modifications during the process from C3 -C4 to C4. The transcriptomic comparison suggested that in addition to the major differences in C4 core pathway, the pathways of glycolysis, citrate acid metabolism and protein synthesis were dramatically modified during the inducement of C4 photosynthetic states. Transcripts of many transporters, including not only metabolite transporters but also ion transporters, were dramatically increased in C4 photosynthetic state. Many candidate regulatory genes with unidentified functions were differentially expressed in C3 -C4 and C4 photosynthetic states. Finally, it was indicated that ABA, auxin signaling and DNA methylation play critical roles in the regulation of C4 photosynthesis. In summary, by studying the different photosynthetic states of the same species, this work provides the major transcriptional differences between C3 -C4 and C4 photosynthesis, and many of the transcriptional differences are potentially related to C4 development and therefore are the potential targets for reverse genetics studies.
    Plant Molecular Biology 07/2014; 86(1-2). DOI:10.1007/s11103-014-0215-8 · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a fundamental process in the plant life story, playing a key role in immunity, senescence, nutrient recycling, and adaptation to the environment. Transcriptomics and metabolomics of the rosette leaves of Arabidopsis thaliana autophagy mutants (atg) show that autophagy is essential for cell homeostasis and stress responses and that several metabolic pathways are affected. Depletion of hexoses, quercetins, and anthocyanins parallel the overaccumulation of several amino acids and related compounds, such as glutamate, methionine, glutathione, pipecolate, and 2-aminoadipate. Transcriptomic data show that the pathways for glutathione, methionine, raffinose, galacturonate, and anthocyanin are perturbed. Anthocyanin depletion in atg mutants, which was previously reported as a possible defect in flavonoid trafficking to the vacuole, appears due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in flavonoid biosynthesis. Overexpression of the PRODUCTION OF ANTHOCYANIN PIGMENT1 transcription factor restores anthocyanin accumulation in vacuoles of atg mutants. Transcriptome analyses reveal connections between autophagy and (1) salicylic acid biosynthesis and response, (2) cytokinin perception, (3) oxidative stress and plant defense, and possible interactions between autophagy and the COP9 signalosome machinery. The metabolic and transcriptomic signatures identified for the autophagy mutants are discussed and show consistencies with the observed phenotypes.
    The Plant Cell 05/2014; 26(5). DOI:10.1105/tpc.114.124677 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NAC (no apical meristem, Arabidopsis transcription activation factor 1 and 2, cup-shaped cotyledon 2) transcription factors (TFs) play important roles in plant growth, development, and responses to abiotic and biotic stress. Two novel NAC TFs were isolated from Citrullus colocynthis, a highly drought-tolerant cucurbit species: CcNAC1 and CcNAC2 each with conserved A–E NAC domains. Subcellular location of CcNAC1 and CcNAC2 investigated via transient expression of 35S::CcNAC1::GFP and 35S::CcNAC2::GFP fusion constructs in Arabidopsis protoplasts, revealed nuclear localization. The transactivation ability of CcNACs was examined in the GAL4 yeast assay system, and showed that only the C-terminal domain of CcNAC1 has the ability to activate reporter genes LacZ and His3. The CcNAC genes accumulated in a tissue-specific manner with expression levels in male flowers of C. colocynthis higher than leaves, hypocotyls or roots. Genome walking was used to isolate the CcNAC1 and CcNAC2-promoter regions. A high number of stress-related sequence motifs were detected, especially in the CcNAC1 promoter. C. colocynthis seedlings were treated with PEG, abscisic acid, salicylic acid (SA), jasmonic acid (JA), H2O2, ethylene, gibberellic acid (GA), wounding or salt. High CcNAC1 expression levels were detected following JA application, and wounding, while high CcNAC2 levels followed treatment with GA, JA, SA, and wounding, indicative of differential regulation of these stress responsive TFs in this cucurbit species.
    Acta Physiologiae Plantarum 03/2014; 36(3). DOI:10.1007/s11738-013-1440-5 · 1.52 Impact Factor