Diet-Induced Obesity Prevents Interstitial Dispersion of Insulin in Skeletal Muscle

Department of Physiology and Biophysics, University of Southern California, Los Angeles, California, USA.
Diabetes (Impact Factor: 8.47). 12/2009; 59(3):619-26. DOI: 10.2337/db09-0839
Source: PubMed

ABSTRACT Obesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD).
Dogs were fed a regular diet (lean) or one supplemented with bacon grease for 9-12 weeks (HFD). Basal insulin (0.2 mU x min(-1) x kg(-1)) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control.
INJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals.
Insulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Reversing impaired insulin sensitivity has been suggested as treatment for heart failure. However, recent clinical evidence suggests the opposite. Here we present a line of reasoning in support of the hypothesis that insulin resistance protects the heart from the consequences of fuel overload in the dysregulated metabolic state of obesity and diabetes. We discuss pathways of myocardial fuel toxicity, as well as several layers of defense against fuel overload. Our reassessment of the literature suggests that in the heart insulin sensitizing agents result in an elimination of some of the defenses, leading to cytotoxic damage. In contrast, a normalization of fuel supply should either prevent or reverse the process. Taken together, we offer a new perspective on insulin resistance of the heart.
    AJP Heart and Circulatory Physiology 10/2013; 305(12). DOI:10.1152/ajpheart.00854.2012 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vascular endothelium is a dynamic structure responsible for the separation and regulated movement of biological material between circulation and interstitial fluid. Hormones and nutrients can move across the endothelium either via a transcellular or paracellular route. Transcellular endothelial transport is well understood and broadly acknowledged to play an important role in the normal and abnormal physiology of endothelial function. However, less is known about the role of the paracellular route. Although the concept of endothelial dysfunction in diabetes is now widely accepted, we suggest that alterations in paracellular transport should be studied in greater detail and incorporated into this model. In this review we provide an overview of endothelial paracellular permeability and discuss its potential importance in contributing to the development of diabetes and associated complications. Accordingly, we also contend that if better understood, altered endothelial paracellular permeability could be considered as a potential therapeutic target for diabetes.
    Diabetes & metabolism journal 04/2014; 38(2):92-99. DOI:10.4093/dmj.2014.38.2.92
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rising incidence of diabetes and the associated metabolic diseases including obesity, cardiovascular disease and hypertension have led to investigation of a number of drugs to treat these diseases. However, lifestyle interventions including diet and exercise remain the first line of defense. The benefits of exercise are typically presented in terms of weight loss, improved body composition and reduced fat mass, but exercise can have many other beneficial effects. Acute effects of exercise include major changes in blood flow through active muscle, an active hyperemia that increases the delivery of oxygen to the working muscle fibers. Longer term exercise training can affect the vasculature, improving endothelial health and possibly basal metabolic rates. Further, insulin sensitivity is improved both acutely after a single bout of exercise and shows chronic effects with exercise training, effectively reducing diabetes risk. Exercise-mediated improvements in endothelial function may also reduce complications associated with both diabetes and other metabolic disease. Thus, while drugs to improve microvascular function in diabetes continue to be investigated, exercise can also provide many similar benefits on endothelial function and should remain the first prescription when treating insulin resistance and diabetes. This review will investigate the effects of exercise on the blood vessel and the potential benefits of exercise on cardiovascular disease and diabetes.
    Journal of Diabetes & Metabolism 11/2013; 4:308. DOI:10.4172/2155-6156.1000308

Full-text (2 Sources)

Available from
May 15, 2014

Similar Publications