Autophagy: a new target for advanced papillary thyroid cancer therapy.

Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
Surgery (Impact Factor: 3.11). 12/2009; 146(6):1208-14. DOI: 10.1016/j.surg.2009.09.019
Source: PubMed

ABSTRACT Autophagy is a conserved response to stress that facilitates cell survival in some contexts and promotes cell death in others. We sought to characterize autophagy in papillary thyroid cancer (PTC), and to determine the effects of autophagy inhibition on chemosensitivity and radiosensitivity.
The human thyroid papillary carcinoma cell lines TPC-1 and 8505-C were treated with doxorubicin or radiation in the presence or absence of the autophagy-specific inhibitor 3-methyladenine (3-MA).
Although light chain 3 (LC3)-II protein levels were undetectable in normal thyroid and PTC specimens at baseline, doxorubicin exposure induced LC3-II expression and the formation of autophagosomes. Both PTC cell lines expressed low levels of LC3-II under standard conditions. Treatment of these cells with doxorubicin strongly induced LC3-II expression and the formation of autophagosomes; however, doxorubicin-mediated induction of LC3-II was abrogated by 3-MA. Moreover, 3-MA significantly increased the doxorubicin IC(50) in both PTC cell lines. Radiation exposure also induced LC3-II expression. Treatment with 3-MA abrogated the radiation-induced increase in LC3-II in both cell lines and reduced radiosensitivity by 49% and 31% in 8505-C and TPC-1 cells, respectively.
Autophagy inhibition promotes PTC resistance to doxorubicin and radiation. Therefore, autophagy activation may be a useful adjunct treatment for patients with PTC that is refractory to conventional therapy.

Download full-text


Available from: Brendan D Price, Jul 07, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most common malignancy amongst women worldwide but despite enormous efforts to address this problem, there is still limited success with most of the current therapeutic strategies. The current study describes the anti-cancer activity of a binuclear palladacycle complex (AJ-5) in oestrogen receptor positive (MCF7) and oestrogen receptor negative (MDA-MB-231) breast cancer cells as well as human breast cancer stem cells. AJ-5 is shown to induce DNA double strand breaks leading to intrinsic and extrinsic apoptosis and autophagy cell death pathways which are mediated by the p38 MAP kinase. This study provides evidence that AJ-5 is potentially an effective compound in the treatment of breast cancer. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Cancer Letters 11/2014; 357(1). DOI:10.1016/j.canlet.2014.11.027 · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although autophagy is generally considered a prosurvival mechanism that preserves viability, there is evidence that it could drive an alternative programmed cell death pathway in cells with defects in apoptosis. Because the inhibition of autophagic activity promotes resistance to both chemotherapy and external beam radiation in papillary thyroid cancer (PTC), we determined if RAD001, a potent activator of autophagy, improves the efficacy of either therapy. We found that RAD001 increased the expression level of light chain 3-II, a marker for autophagy, as well as autophagosome formation in cell lines and in human PTC ex vivo. RAD001 sensitized PTC to doxorubicin and external beam radiation in a synergistic fashion, suggesting that combination therapy could improve therapeutic response at less toxic concentrations. The effects of RAD001 were abrogated by RNAi knockdown of the autophagy-related gene 5, suggesting that RAD001 acts, in part, by enhancing autophagy. Because the synergistic activity of RAD001 with doxorubicin and external radiation suggests distinct and complementary mechanisms of action, we characterized how autophagy modulates signaling pathways in PTC. To do so, we performed kinome profiling and discovered that autophagic activation resulted in Src phosphorylation and Met dephosphorylation. Src inhibition did not reverse the effects of RAD001, whereas Met inhibition reversed the effects of autophagy blockade on chemosensitivity. These results suggest that the anticancer effects of autophagic activation are mediated largely through Met. We conclude that RAD001 induces autophagy, which enhances the therapeutic response to cytotoxic chemotherapy and external beam radiation in PTC.
    Molecular Cancer Research 09/2010; 8(9):1217-26. DOI:10.1158/1541-7786.MCR-10-0162 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a type of cellular catabolic degradation response to nutrient starvation or metabolic stress. The main function of autophagy is to maintain intracellular metabolic homeostasis through degradation of unfolded or aggregated proteins and organelles. Although autophagic regulation is a complicated process, solid evidence demonstrates that the PI3K-Akt-mTOR, LKB1-AMPK-mTOR and p53 are the main upstream regulators of the autophagic pathway. Currently, there is a bulk of data indicating the important function of autophagy in cancer. It is noteworthy that autophagy facilitates the cancer cells' resistance to chemotherapy and radiation treatment. The abrogation of autophagy potentiates the re-sensitization of therapeutic resistant cancer cells to the anticancer treatment via autophagy inhibitors, such as 3-MA, CQ and BA, or knockdown of the autophagy related molecules. In this review, we summarize the accumulation of evidence for autophagy's involvement in mediating resistance of cancer cells to anticancer therapy and suggest that autophagy might be a potential therapeutic target in anticancer drug resistance in the future.
    Biochimica et Biophysica Acta 12/2010; 1806(2):220-9. DOI:10.1016/j.bbcan.2010.07.003 · 4.66 Impact Factor

Similar Publications