Article

Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture.

Department of Orthopaedic Surgery, Children's Hospital of Boston, Harvard Medical School, Boston, MA, USA.
Tissue Engineering Part A (Impact Factor: 4.64). 12/2009; 16(5):1479-89. DOI: 10.1089/ten.TEA.2009.0199
Source: PubMed

ABSTRACT Collagen-platelet (PL)-rich plasma composites have shown in vivo potential to stimulate anterior cruciate ligament (ACL) healing at early time points in large animal models. However, little is known about the cellular mechanisms by which the plasma component of these composites may stimulate healing. We hypothesized that the components of PL-rich plasma (PRP), namely the PLs and PL-poor plasma (PPP), would independently significantly influence ACL cell viability and metabolic activity, including collagen gene expression. To test this hypothesis, ACL cells were cultured in a collagen type I hydrogel with PLs, PPP, or the combination of the two (PRP) for 14 days. The inclusion of PLs, PPP, and PRP all significantly reduced the rate of cell apoptosis and enhanced the metabolic activity of fibroblasts in the collagen hydrogel. PLs promoted fibroblast-mediated collagen scaffold contraction, whereas PPP inhibited this contraction. PPP and PRP both promoted cell elongation and the formation of wavy fibrous structure in the scaffolds. The addition of only PLs or only plasma proteins did not significantly enhance gene expression of collagen types I and III but the combination, as PRP, did. Our findings suggest that the addition of both PLs and plasma proteins to collagen hydrogel may be useful in stimulating ACL healing by enhancing ACL cell viability, metabolic activity, and collagen synthesis.

1 Follower
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The response of the joint to anterior cruciate ligament (ACL) injury has not been fully characterized. In particular, the characterization of both catabolic factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), and markers of ongoing tissue damage (CRP), and anabolic factors, including vascular endothelial growth factor (VEGF), transforming growth factor β-induced (TGFβI), and the presence of CD163+ macrophages, have not been well defined. In this study, we hypothesized ACL injury would catalyze both catabolic and anabolic processes and that these would have different temporal profiles of expression.
    Journal of Inflammation 12/2014; 11(1):34. DOI:10.1186/s12950-014-0034-3 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth factors and cytokines (referred to collectively hereafter as GFs) control cell growth, proliferation, and differentiation via a network of inter and intracellular signaling pathways. There are striking parallels between the pathways involved in skin wound healing and those implicated in photoaging of the skin. In recent years, topical and injectable GFs have emerged as an intriguing therapeutic modality that can be harnessed for aesthetic and medical purposes. This article provides a review of available evidence for the role in skin regeneration of topical GFs, and of injectable GFs contained in autologous platelet-rich plasma (PRP). It presents data from recent studies of GFs, offers a discussion of their potential to serve as antiaging actives, and includes safety considerations. As studies of injectable GFs typically assume preexisting familiarity with PRP protocols and the theory behind them, explanatory notes are provided. An assessment is provided of the evidence gaps that exist currently between experimental observations regarding GFs and their proven clinical benefits. Data of evidence levels II and III support the use for skin rejuvenation of topical GFs derived from sources including secretions or lysate of human dermal fibroblasts, and secretions of the snail Cryptomphalus aspersa. GFs with associated stem cell proteins, secreted by human dermal fibroblasts under hypoxic stress, can accelerate skin healing after laser resurfacing. In vitro and animal studies, small case series of PRP-treated patients and one prospective clinical study of its variant, platelet-rich fibrin matrix (PRFM), suggest the value of injectable GFs for skin rejuvenation. However, data of higher power are required to expand this proof of concept into an evidence-based paradigm. The clinical applications of topical and injectable GFs are promising, and remain to be fully defined. With continued study, data of higher evidence level can be accrued and formulations can be developed that offer optimal clinical efficacy, safety, tolerability, and stability. Better understanding of the mechanism of action of GFs can potentially advance our general understanding of dermal signaling pathways, and hence of hyaluronic acid and other alloplastic fillers; and allow the development of protocols for synergistic combination of GFs with other skin rejuvenation modalities.
    Facial Plastic Surgery 04/2014; 30(2):157-71. DOI:10.1055/s-0034-1372423 · 0.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of platelet-rich plasma (PRP) to improve clinical outcome following a soft tissue injury, regeneration, and repair has been the subject of intense investigation and discussion. This article endeavors to relate clinical and basic science strategies focused on biological augmentation of the healing response in anterior cruciate ligament (ACL) and meniscus repair and replacement using PRP. Therein, a translational feedback loop is created in the literature and targeted towards the entire multidisciplinary team. Ultimately, it is hoped that the theoretical benefits of PRP on soft-tissue interfacial healing will emerge clinically following a careful, focused characterization at the benchtop, and prospective randomized controlled clinical study.
    The journal of knee surgery 08/2014; DOI:10.1055/s-0034-1387166

Full-text (2 Sources)

Download
12 Downloads
Available from
Oct 28, 2014