Article

A compact, automated cell culture system for clinical scale cell expansion from primary tissues.

Graduate School of Engineering, Nagoya University, Nagoya, Japan.
Tissue Engineering Part C Methods (Impact Factor: 4.64). 12/2009; 16(5):947-56. DOI: 10.1089/ten.TEC.2009.0305
Source: PubMed

ABSTRACT Despite the growing number of clinically practical automated cell culture systems, demand is also increasing for more compact platforms with greater capabilities to prepare primary cells directly from patient tissue. Here we report the development of an automated cell culture system that is also compact. The machinery consisted of a supply unit, an incubation unit, and a collection unit, which fit within a 70 cm x 60 cm x 86 cm space. The compact size was enabled by our concept of using a single culture vessel from the primary culture steps to final cell harvest instead of scaling up with multiple culture vessels. Human fibroblasts and bone marrow stromal cells (BMSCs) were successfully cultured with this system over 19 days without contamination. From three pieces of gingival tissue (2 mm x 2 mm) or from 10 mL of bone marrow aspirate, the system could produce more than 2.0x10(7) cells and up to 3.0x10(7) cells for fibroblasts and BMSCs, respectively. The BMSCs produced by this system were capable of ectopic bone formation after transplantation into the subcutaneous space of nude mice. Our prototype system will provide a foundation for minimizing automatic culture machinery with clinically relevant cell yields while also expanding the automation capabilities to include primary tissue culture.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
    Archives of Pharmacal Research 11/2013; · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have performed clinical applications of cell sheet-based regenerative medicine with human patients in several fields. In order to achieve the mass production of transplantable cell sheets, we have developed automated cell culture systems. Here, we report an automated robotic system utilizing a cell culture vessel, cell cartridge. The cell cartridge had two rooms for epithelial cells and feeder layer cells separating by porous membrane on which a temperature-responsive polymer was covalently immobilized. After pouring cells into this robotic system, cell seeding, medium change, and microscopic examination during culture were automatically performed according to the computer program. Transplantable corneal epithelial cell sheets were successfully fabricated in cell cartridges with this robotic system. Then, fabricated cell sheets were transplanted onto ocular surfaces of rabbit limbal epithelial stem cell deficiency model after 6-h transportation using a portable homothermal container to keep inner temperature at 36 °C. Within one week after transplantation, normal corneal epithelium was successfully regenerated. This automatic cell culture system would be useful for industrialization of tissue-engineered products for regenerative medicine.
    Biomaterials 08/2013; · 7.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quantitative determination of key adherent cell culture characteristics such as confluency, morphology and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post-hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (< 1s per 1208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.
    Biotechnology and Bioengineering 09/2013; · 3.65 Impact Factor