Simplified, Enhanced Protein Purification Using an Inducible, Autoprocessing Enzyme Tag

Department of Pathology, Stanford School of Medicine, Stanford, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 12/2009; 4(12):e8119. DOI: 10.1371/journal.pone.0008119
Source: PubMed

ABSTRACT We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD), an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP(6)), a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His(6)-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP(6) to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s) and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.

Download full-text


Available from: Matthew Bogyo, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lucilin is a 36 residue cecropin antimicrobial peptide identified as a partial genetic sequence in Lucilia sericata maggots. The antimicrobial spectrum and toxicity profile of Lucilin is unknown. We first report the expression of Lucilin as an active recombinant fusion protein with a cysteine protease domain (CPD) tag. The fusion protein, GWLK-Lucilin-CPD-His8, showed maximum overexpression in Escherichia coli BL21 cells after 12 hours induction with 0.5 mM IPTG (isopropyl beta-D-thiogalactoside) and growth conditions were 37 °C and 150 rpm shaking. The fusion protein was expressed as a soluble form and was purified by Ni-IMAC. The purified protein was active against E. coli ATCC 35218 with a MIC of 0.68 μM, and a clinical isolate of E. coli with extended spectrum beta-lactamase (ESBL) with a MIC of 0.8 μM. The recombinant GWLK-Lucilin-CPD-His8 was not toxic against human erythrocytes or Vero cells with a therapeutic index >63. The results suggest that GWLK-Lucilin-CPD-His8 represents a potential candidate for therapy against multidrug resistant Gram-negative bacteria.
    Protein Expression and Purification 05/2014; DOI:10.1016/j.pep.2014.05.004 · 1.51 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteases regulate a plethora of biological processes. Because they irreversibly cleave peptide bonds, the activity of proteases is strictly controlled. While there are many ways to regulate protease activity, an emergent mechanism is the modulation of protease function by small molecules acting at allosteric sites. This mode of regulation holds the potential to allow for the specific and temporal control of a given biological process using small molecules. These compounds also serve as useful tools for studying protein dynamics and function. This review highlights recent advances in identifying and characterizing natural and synthetic small molecule allosteric regulators of proteases and discusses their utility in studies of protease function, drug discovery and protein engineering.
    Molecular BioSystems 08/2010; 6(8):1431-43. DOI:10.1039/c003913f · 3.18 Impact Factor