Article

Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression.

Department of Surgery, University of South Florida, Tampa, FL, USA.
Gene therapy (Impact Factor: 4.75). 12/2009; 17(3):419-23. DOI: 10.1038/gt.2009.153
Source: PubMed

ABSTRACT Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly increased cardiac expression of VEGF compared with injection of plasmid alone. This is the first report showing successful intracardiac delivery, through in vivo EP, of a protein expressing plasmid in a large animal.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p<0.03), 40 Volts (p<0.05), and 90 Volts (p<0.05), but not with 60 Volts (p<0.09) while maintaining a pulse width of 20 milliseconds. The group with gene electro transfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.
    PLoS ONE 12/2014; 9(12):e115235. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carotid artery disease is a widespread cause of morbidity and mortality. Porcine models of vascular disease are well established in vivo, but existing endothelial systems in vitro (e.g. human umbilical vein endothelial cells, rat aortic endothelial cultures) poorly reflect carotid endothelium. A reliable in vitro assay would improve design of in vivo experiments and allow reduction and refinement of animal use. This study aimed (1) to develop ex vivo endothelial cultures from porcine carotid and (2) to test whether these were suitable for lentivector-mediated transgene delivery. Surplus carotid arteries were harvested from young adult female Large White pigs within 10 min post-mortem. Small sectors of carotid artery wall (approximately 4 mm × 4 mm squares) were immobilised in a stable gel matrix. Cultures were exposed to HIV-derived lentivector (LV) encoding a reporter transgene or the equivalent integration-deficient vector (IDLV). After 7-14 days in vitro, cultures were fixed and labelled histochemically. Thread-like multicellular outgrowths were observed that were positive for endothelial cell markers (CD31, VEGFR2, von Willebrand factor). A minority of cells co-labelled for smooth muscle markers. Sensitivity to cytotoxic agents (paclitaxel, cycloheximide, staurosporine) was comparable to that in cell cultures, indicating that the gel matrix permits diffusive access of small pharmacological molecules. Transgene-expressing cells were more abundant following exposure to LV than IDLV (4.7, 0.1 % of cells, respectively). In conclusion, ex vivo adult porcine carotid artery produced endothelial cell outgrowths that were effectively transduced by LV. This system will facilitate translation of novel therapies to clinical trials, with reduction and refinement of in vivo experiments.
    Translational Stroke Research 10/2013; 4(5):507-14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmid or non-viral gene therapy offers an alternative to classic viral gene delivery that negates the need for a biological vector. In this case, delivery is enhanced by a variety of approaches including lipid or polymer conjugation, particle-mediated delivery, hydrodynamic delivery, ultrasound or electroporation. Electroporation was originally used as a laboratory tool to deliver DNA to bacterial and mammalian cells in culture. Electrode development allowed this technique to be modified for in vivo use. After preclinical therapeutic studies, clinical delivery of cell impermeant chemotherapeutic agents progressed to clinical delivery of plasmid DNA. One huge benefit of this delivery technique is its malleability. The pulse protocol used for plasmid delivery can be fine-tuned to control the levels and duration of subsequent transgene expression. This fine-tuning allows transgene expression to be tailored to each therapeutic application. Effective and appropriate expression induces the desired clinical response that is a critical component for any gene therapy. This chapter focuses on clinical trials using in vivo electroporation or electrotransfer as a plasmid delivery method. The first clinical trial was initiated in 2004, and now more than fifty trials use electric fields for gene delivery. Safety and tolerability has been demonstrated by several groups, and early clinical efficacy results are promising in both cancer therapeutic and infectious disease vaccine applications. Copyright © 2015 Elsevier Inc. All rights reserved.
    Advances in genetics. 01/2015; 89:235-62.

Full-text (2 Sources)

Download
45 Downloads
Available from
May 27, 2014