Article

A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria.

Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-5606, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2009; 106(51):21567-72. DOI: 10.1073/pnas.0908106106
Source: PubMed

ABSTRACT The mechanism by which docking fidelity is achieved for the multitude of cofactor-dependent enzymes is poorly understood. In this study, we demonstrate that delivery of coenzyme B(12) or 5'-deoxyadenosylcobalamin by adenosyltransferase to methylmalonyl-CoA mutase is gated by a small G protein, MeaB. While the GTP-binding energy is needed for the editing function; that is, to discriminate between active and inactive cofactor forms, the chemical energy of GTP hydrolysis is required for gating cofactor transfer. The G protein chaperone also exerts its editing function during turnover by using the binding energy of GTP to elicit release of inactive cofactor that is occasionally formed during the catalytic cycle of MCM. The physiological relevance of this mechanism is demonstrated by a patient mutation in methylmalonyl-CoA mutase that does not impair the activity of this enzyme per se but corrupts both the fidelity of the cofactor-loading process and the ejection of inactive cofactor that forms occasionally during catalysis. Consequently, cofactor in the incorrect oxidation state gains access to the mutase active site and is not released if generated during catalysis, leading, respectively, to assembly and accumulation of inactive enzyme and resulting in methylmalonic aciduria.

0 Bookmarks
 · 
162 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5'-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester group leading to a change in the degree of carbon skeleton branching. These enzymes are predicted to share common architectural elements: a Rossman fold and a triose phosphate isomerase (TIM)-barrel domain for binding cofactor and substrate, respectively. Within this family, methylmalonyl-CoA mutase (MCM) is the best studied and is the only member found in organisms ranging from bacteria to man. MCM interconverts (2R)-methylmalonyl-CoA and succinyl-CoA. The more recently discovered family members include isobutyryl-CoA mutase (ICM), which interconverts isobutyryl-CoA and n-butyryl-CoA; ethylmalonyl-CoA mutase, which interconverts (2R)-ethylmalonyl-CoA and (2S)-methylsuccinyl-CoA; and 2-hydroxyisobutyryl-CoA mutase, which interconverts 2-hydroxyisobutyryl-CoA and (3S)-hydroxybutyryl-CoA. A variant in which the two subunits of ICM are fused to a G-protein chaperone, IcmF, has been described recently. In addition to its ICM activity, IcmF also catalyzes the interconversion of isovaleryl-CoA and pivalyl-CoA. This review focuses on the involvement of acyl-CoA mutases in central carbon and secondary bacterial metabolism and on their biotechnological potential for applications ranging from bioremediation to stereospecific synthesis of C2-C5 carboxylic acids and alcohols, and for production of potential commodity and specialty chemicals.
    Biochemistry 07/2012; 51(31):6039-46. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP:Co(I)rrinoid adenosyltransferases (ACATs) are enzymes that catalyze the formation of adenosylcobalamin (AdoCbl, coenzyme B12) from cobalamin and ATP. There are three families of ACATs, namely CobA, EutT and PduO. In Salmonella enterica, CobA is the housekeeping enzyme that is required for de novo AdoCbl synthesis and for salvaging incomplete precursors and cobalamin from the environment. Here, we report the crystal structure of CobA in complex with ATP, four-coordinate cobalamin, and five-coordinate cobalamin. This provides the first crystallographic evidence for the existence of cob(II)alamin in the active site of CobA. The structure suggests a mechanism in which the enzyme adopts a closed conformation and two residues, Phe91 and Trp93, displace 5,6-dimethylbenzimidazole (DMB), the lower nucleotide ligand base of cobalamin, to generate a transient four-coordinate cobalamin, which is critical in the formation of the AdoCbl Co-C bond. In vivo and in vitro mutational analysis of Phe91 and Trp93 emphasize the important role of bulky hydrophobic side chains in the active site. The proposed manner in which CobA increases the redox potential of the cob(II)alamin/cob(I)alamin couple to facilitate formation of the Co-C bond appears to be analogous to that utilized by the PduO-type ACATs, where in both cases the polar coordination of the lower ligand to the cobalt ion is eliminated by placing that face of the corrin ring adjacent to a cluster of bulky hydrophobic side chains.
    Biochemistry 11/2012; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fidelity during cofactor assembly is essential for the proper functioning of metalloenzymes and is ensured by specific chaperones. MeaB, a G-protein chaperone for the coenzyme B12-dependent radical enzyme methylmalonyl-CoA mutase (MCM), uses the energy of GTP binding, hydrolysis or both to regulate cofactor loading into MCM, protect MCM from inactivation and rescue MCM that is inactivated during turnover. Typically, G proteins signal to client proteins using the conformationally mobile switch I and II loops. Crystallographic snapshots of MeaB reported herein reveal a new switch III element that has substantial conformational plasticity. Using alanine-scanning mutagenesis, we demonstrate that the switch III motif is critical for bidirectional signal transmission of the GTPase-activating protein activity of MCM and the chaperone functions of MeaB in the MeaB-MCM complex. Mutations in the switch III loop identified in patients corrupt this interprotein communication and lead to methylmalonic aciduria, an inborn error of metabolism.
    Nature Chemical Biology 07/2013; · 12.95 Impact Factor

Full-text

View
49 Downloads
Available from
May 21, 2014