Article

A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria.

Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-5606, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2009; 106(51):21567-72. DOI: 10.1073/pnas.0908106106
Source: PubMed

ABSTRACT The mechanism by which docking fidelity is achieved for the multitude of cofactor-dependent enzymes is poorly understood. In this study, we demonstrate that delivery of coenzyme B(12) or 5'-deoxyadenosylcobalamin by adenosyltransferase to methylmalonyl-CoA mutase is gated by a small G protein, MeaB. While the GTP-binding energy is needed for the editing function; that is, to discriminate between active and inactive cofactor forms, the chemical energy of GTP hydrolysis is required for gating cofactor transfer. The G protein chaperone also exerts its editing function during turnover by using the binding energy of GTP to elicit release of inactive cofactor that is occasionally formed during the catalytic cycle of MCM. The physiological relevance of this mechanism is demonstrated by a patient mutation in methylmalonyl-CoA mutase that does not impair the activity of this enzyme per se but corrupts both the fidelity of the cofactor-loading process and the ejection of inactive cofactor that forms occasionally during catalysis. Consequently, cofactor in the incorrect oxidation state gains access to the mutase active site and is not released if generated during catalysis, leading, respectively, to assembly and accumulation of inactive enzyme and resulting in methylmalonic aciduria.

0 Followers
 · 
201 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16's C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L(-1) and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g(-1) h(-1), respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.
    Applied Microbiology and Biotechnology 12/2014; 99(5). DOI:10.1007/s00253-014-6266-6 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The methylmalonyl Co-A mutase-associated GTPase MeaB from Methylobacterium extorquens is involved in glyoxylate regulation and required for growth. In humans, mutations in the homolog methylmalonic aciduria associated protein (MMAA) cause methylmalonic aciduria, which is often fatal. The central role of MeaB from bacteria to humans suggests that MeaB is also important in other, pathogenic bacteria such as Mycobacterium tuberculosis. However, the identity of the mycobacterial MeaB homolog is presently unclear. Here, we identify the M. tuberculosis protein Rv1496 and its homologs in M. smegmatis and M. thermoresistibile as MeaB. The crystal structures of all three homologs are highly similar to MeaB and MMAA structures and reveal a characteristic three-domain homodimer with GDP bound in the G domain active site. A structure of Rv1496 obtained from a crystal grown in the presence of GTP exhibited electron density for GDP, suggesting GTPase activity. These structures identify the mycobacterial MeaB and provide a structural framework for therapeutic targeting of M. tuberculosis MeaB.
    Journal of Structural and Functional Genomics 04/2015; 16(2). DOI:10.1007/s10969-015-9197-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. Here, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms of IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.
    Proceedings of the National Academy of Sciences 02/2015; 112(8). DOI:10.1073/pnas.1419582112 · 9.81 Impact Factor

Full-text

Download
66 Downloads
Available from
May 21, 2014