A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula

International Journal of Remote Sensing 28 (2007) 19
Source: OAI

ABSTRACT An NDVI dataset covering Fennoscandia and the Kola peninsula was created for vegetation and climate studies, using Moderate Resolution Imaging Spectroradiometer 16-day maximum value composite data from 2000 to 2005. To create the dataset, (1) the influence of the polar night and snow on the NDVI values was removed by replacing NDVI values in winter with a pixel-specific NDVI value representing the NDVI outside the growing season when the pixel is free of snow; and (2) yearly NDVI time series were modelled for each pixel using a double logistic function defined by six parameters. Estimates of the onset of spring and the end of autumn were then mapped using the modelled dataset and compared with ground observations of the onset of leafing and the end of leaf fall in birch, respectively. Missing and poor-quality data prevented estimates from being produced for all pixels in the study area. Applying a 5 km×5 km mean filter increased the number of modelled pixels without decreasing the accuracy of the predictions. The comparison shows good agreement between the modelled and observed dates (root mean square error = 12 days, n = 108 for spring; root mean square error = 10 days, n = 26, for autumn). Fennoscandia shows a range in the onset of spring of more than 2 months within a single year and locally the onset of spring varies with up to one month between years. The end of autumn varies by one and a half months across the region. While continued validation with ground data is needed, this new dataset facilitates the detailed monitoring of vegetation activity in Fennoscandia and the Kola peninsula.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global warming is expected to cause earlier springs and increased primary productivity in the Arctic. These changes may improve food availability for Arctic herbivores, but may also have negative effects by generating a mismatch between the surge of high quality food in the spring and the timing of reproduction. We analyzed a 10 year dataset of satellite derived measures of vegetation green-up, population densities, calf body masses and female reproductive success in 19 reindeer () populations in Northern Norway. An early onset of spring and high peak plant productivity had positive effects on calf autumn body masses and female reproductive success. In addition, body masses and reproductive success were both negatively related to population density. The quantity of food available, as determined by the onset of vegetation green-up and plant productivity over the summer were the main drivers of body mass growth and reproductive success. We found no evidence for an effect of the speed of spring green-up. Nor did we detect a negative mismatch between early springs and subsequent recruitment. Effects of global warming on plant productivity and onset of spring is likely to positively affect sub-Arctic reindeer.
    PLoS ONE 02/2013; 8(2):e56450. DOI:10.1371/journal.pone.0056450 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global climate change is expected to result in greater variation in snow cover and subsequent impacts on land surface hydrology and vegetation production in the high Trans Himalayan region (THR). This paper examines how the changes in timing and duration of snow cover affect the spatio-temporal pattern of rangeland phenology and production in the region. Moderate Resolution Imaging Spectrometer (MODIS) 16-day normalized difference vegetation index (NDVI) data from 2000 to 2009 and concurrent snow cover, precipitation and temperature data were analyzed. In contrast to numerous studies which have suggested that an earlier start of the season and an extension of the length of the growing season in mid and higher latitude areas due to global warming, this study shows a delay in the beginning of the growing season and the peak time of production, and a decline in the length of growing season in the drier part of THR following a decline and a delay in snow cover. Soil moisture in the beginning of the growing season and consequent rangeland vegetation production in drier areas of the THR was found to be strongly dependent upon the timing and duration of snow cover. However, in the wetter part of the THR, an earlier start of season, a delay in end of season and hence a longer growing season was observed, which could be attributed to warming in winter and early spring and cooling in summer and late spring and changes in timing of snow melt. The study shows a linear positive relationship between rangeland vegetation production and snow cover in the drier parts of THR, a quadratic relationship near to permanent snow line, and a negative linear relationship in wetter highlands. These findings suggest that, while temperature is important, changes in snow cover and precipitation pattern play more important roles in snow-fed, drier regions for rangeland vegetation dynamics.
    Climatic Change 03/2012; 117(1-2). DOI:10.1007/s10584-012-0562-x · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.
    01/2014; 2(1):2. DOI:10.1186/2051-3933-2-2