Article

Vibrations of microspheres probed with ultrashort optical pulses.

Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
Optics Letters (Impact Factor: 3.18). 12/2009; 34(23):3740-2. DOI: 10.1364/OL.35.000940
Source: PubMed

ABSTRACT We use ultrashort optical pulses to excite and detect vibrations of single silica spheres with a diameter of 5 microm placed at the surface of an acoustically mismatched substrate. In addition to the photoelastic detection of picosecond longitudinal acoustic pulses propagating inside the bulk, we detect gigahertz acoustic resonances of the sphere through probe beam defocusing. The mode frequencies are in close accord with those calculated from the elastic vibrations of a free sphere. We also record a resonant enhancement in the amplitude of specific modes of two touching spheres.

Full-text

Available from: Vincent TOURNAT, Apr 18, 2015
0 Followers
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.
    Planta 03/2014; 239(5). DOI:10.1007/s00425-014-2045-y · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to work at higher ultrasonic frequencies, for instance, to increase the resolution, it is necessary to fabricate smaller and higher frequency transducers. This paper presents an ultrasonic transducer capable of being made at a very small size and operated at GHz frequencies. The transducers are activated and read optically using pulsed lasers and without physical contact between the instrumentation and the transducer. This removes some of the practical impediments of traditional piezoelectric architectures (such as wiring) and allows the devices to be placed immediately on or within samples, reducing the significant effect of attenuation which is very strong at frequencies above 1 GHz. The transducers presented in this paper exploit simultaneous optical and mechanical resonances to couple the optical input into ultrasonic waves and vice versa. This paper discusses the mechanical and optical design of the devices at a modest scale (a few μm) and explores the scaling of the transducers toward the sub-micron scale. Results are presented that show how the transducers response changes depending on its local environment and how the resonant frequency shifts when the transducer is loaded by a printed protein sample.
    The Journal of the Acoustical Society of America 01/2015; 137(1):219. DOI:10.1121/1.4904487 · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.
    Journal of Applied Physics 12/2012; 112(12). DOI:10.1063/1.4769294 · 2.19 Impact Factor