Migration and differentiation of canine bone marrow stromal cells transplanted into the developing mouse brain.

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0126, USA.
Journal of Veterinary Medical Science (Impact Factor: 0.88). 12/2009; 72(3):353-6. DOI: 10.1292/jvms.09-0353
Source: PubMed

ABSTRACT To evaluate whether canine bone marrow stromal cells (BMSCs) can migrate and adopt neural phenotypes in the developing mouse brain we transplanted fluorescently labeled BMSCs into the lateral ventricle of immunocompromised neonatal mice. Most fibroblasts, used as a control, and BMSCs isolated from adult dogs remained around the injection site and exhibited a spindle-shaped appearance. A small number of BMSCs from young dogs were found in the subventricular zone, rostral migratory stream, and olfactory bulbs, and retained expression of neuron marker. Our findings suggest that BMSCs isolated from adult dogs have limited ability of migration and differentiation toward neural cells in the developing brain. Bone marrow of young dogs may contain a primitive stem cell population with neural differentiation capacity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.
    Journal of Neuroscience 06/2005; 25(19):4694-705. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural progenitor cells, including neural stem cells, are a potential expandable source of graft material for transplantation aimed at repairing the damaged CNS. Here we present the first evidence that in vitro-expanded fetus-derived neurosphere cells were able to generate neurons in vivo and improve motor function upon transplantation into an adult rat spinal-cord-contusion injury model. As the source of graft material, we used a neural stem cell-enriched population that was derived from rat embryonic spinal cord (E14.5) and expanded in vitro by neurosphere formation. Nine days after contusion injury, these neurosphere cells were transplanted into adult rat spinal cord at the injury site. Histological analysis 5 weeks after the transplantation showed that mitotic neurogenesis occurred from the transplanted donor progenitor cells within the adult rat spinal cord, a nonneurogenic region; that these donor-derived neurons extended their processes into the host tissues; and that the neurites formed synaptic structures. Furthermore, analysis of motor behavior using a skilled reaching task indicated that the treated rats showed functional recovery. These results indicate that in vitro-expanded neurosphere cells derived from the fetal spinal cord are a potential source for transplantable material for treatment of spinal cord injury.
    Journal of Neuroscience Research 10/2002; 69(6):925-33. · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are a valuable resource for treating disease, but limited access to stem cells from tissues such as brain restricts their utility. Here, we injected marrow stromal cells (MSCs) into the lateral ventricle of neonatal mice and asked whether these multipotential mesenchymal progenitors from bone marrow can adopt neural cell fates when exposed to the brain microenvironment. By 12 days postinjection, MSCs migrated throughout the forebrain and cerebellum without disruption to the host brain architecture. Some MSCs within the striatum and the molecular layer of the hippocampus expressed glial fibrillary acidic protein and, therefore, differentiated into mature astrocytes. MSCs also populated neuron rich regions including the Islands of Calleja, the olfactory bulb, and the internal granular layer of the cerebellum. A large number of MSCs also were found within the external granular layer of the cerebellum. In addition, neurofilament positive donor cells were found within the reticular formation of the brain stem, suggesting that MSCs also may have differentiated into neurons. Therefore, MSCs are capable of producing differentiated progeny of a different dermal origin after implantation into neonatal mouse brains. These results suggest that MSCs are potentially useful as vectors for treating a variety of central nervous system disorders.
    Proceedings of the National Academy of Sciences 10/1999; 96(19):10711-6. · 9.81 Impact Factor