Article

Greater Activation in Left Hemisphere Language-Related Regions During Simple Judgment Tasks Among Substance-Dependent Patients in Treatment for Alcoholism

Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA.
Alcoholism Clinical and Experimental Research (Impact Factor: 3.31). 11/2009; 34(2):331-41. DOI: 10.1111/j.1530-0277.2009.01095.x
Source: PubMed

ABSTRACT Alcoholism is often associated with impaired emotional control. Alcoholics have also been found to have deficits in frontal lobe executive functions. Recent functional imaging studies have suggested that alcoholics show greater activation than nonalcoholics in circuits involving frontal lobes, as well as more posterior brain regions, when engaged in executive-type tasks. In this study, we compared brain activations of alcohol-dependent patients and healthy nonalcoholics while they performed 2 simple judgment tasks designed to activate frontal circuits involved in a basic form of decision making. Participants completed 1 judgment task that required an emotional judgment and 1 task that did not, which enabled us to study whether alcoholics had greater brain activation while performing executive tasks, and to determine if emotional tasks elicited even greater activation than nonemotional tasks.
We performed functional magnetic resonance imaging scans while alcoholic patients and nonalcoholic controls viewed pictures from the International Affective Picture System. In 3 separate runs, participants viewed the images without making a judgment, determined whether the images were indoor or outdoor scenes, or decided if they liked or disliked the images.
There was little difference in brain activation between alcoholics and controls when no judgment was required. When participants made judgments about either the location or whether they liked or disliked an image, however, we observed significantly increased activation in frontal, limbic, and temporal regions in the patients relative to the controls. Increases were particularly robust in the frontal lobe and in areas of the brain associated with language. When we compared the emotional to the nonemotional judgment, the alcoholics, but not the controls, showed greater activation in the ventral mesial frontal cortex.
Alcoholic patients appear to use brain language areas more than nonalcoholics while making judgments about the setting or liking of emotionally arousing visual images. This increased activation may reflect a compensatory recruitment of brain regions to perform simple decision-making tasks.

Full-text

Available from: Daniel W Hommer, Apr 25, 2015
0 Followers
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholism frequently occurs in returning U.S. Veterans, and is often comorbid with Post Traumatic Stress Disorder (PTSD). The goal of this study was to investigate the relationship between white matter changes and neuropsychological alterations in Operation Enduring Freedom, and/or Operation Iraqi Freedom (OEF/OIF) alcoholic Veterans with two primary aims: (1) to examine the relationship of alcoholism to brain structure and function while controlling for the potential effects of comorbid PTSD, and (2) to examine whether the effects of alcoholism are moderated by the quantity of lifetime alcohol consumption. Our sample consisted of 71 deployed OEF/OIF Veterans stratified into four groups: alcoholics without PTSD, alcoholics with PTSD, participants with PTSD without comorbid alcoholism, and control participants without alcoholism or PTSD. Participants were given an extensive neuropsychological and psychiatric assessment battery, as well as Magnetic Resonance Diffusion Tensor Imaging (DT-MRI) scans. Results showed that disruption of executive functioning, and abnormal fractional anisotropy (FA; a measure of axonal integrity) within the frontal subcortical and dorsolateral frontal-parietal regions, occurred independently of the effects of PTSD. Furthermore, these cognitive and neuronal alterations were unique to the most severe subgroup of alcoholics who consumed the greatest amount of alcohol over the course of their lifetime, as compared to the rest of the sample. Axonal integrity within this subgroup, in regions underlying the frontal subcortical area, was shown to be decreased independently of cognitive changes. Integrity of axons underlying the dorsolateral frontal-parietal region, however, was increased. We hypothesized that this is a compensatory mechanism for executive dysfunction.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain tissue slices can be maintained within metabolically stable conditions for long periods of time (hours). This experimental setting has been productive for investigating long-term neural function in vitro. Here, we utilize this experimental approach to describe the recovery of functional connectivity in slices from the mouse hippocampus. Hippocampal slices were cut up bisecting the CA1 region (parietal cut) and each severed half placed adjacent to the other. Stimulation and recording electrodes were placed on each side of the cut; with one electrode stimulating one hemi-slice (20V, 0.033Hz) and the other electrode recording the evoked response from the adjacent hemi-slice. As expected, no evoked response was observed shortly after the beginning of stimulation. However, 20-40min after the initiation of stimulation a large depolarization signal was detected. Right after that, fiber volley potentials were observed in the adjacent hemi-slice. After 1h excitatory postsynaptic potentials (EPSP) were detected. Based on this observation, we hypothesize that recovery of functional connectivity is enhanced by constant delivery of electrical pulses at low frequency to the damaged neural tissue. The described in vitro slice system may become a very suitable experimental method to investigate strategies to enhance the recovery of neural connectivity after brain injury.
    Medical Hypotheses 03/2014; 82(6). DOI:10.1016/j.mehy.2014.03.001 · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substance use disorder is characterized by a transition from volitional to compulsive responding for drug reward. A possible explanation for this transition may be that alcohol-dependent patients (ADP) show a general propensity for a history of rewarded instrumental responses, and these rewarded responses may boost the activation of motivational neurocircuitry for additional reward. Brain imaging studies of decision-making have demonstrated that ADP relative to controls (CON) often show altered neural activation in response to anticipating and receiving rewards, but the majority of studies have not investigated how past performance affects activation. A potential exists for ADP to show increased sensitivity to reward as a function of reward delivery history. In the current study, we used functional magnetic resonance imaging to investigate the neural correlates of risky decision-making in ADP (n = 18) and CON (n = 18) while they played a two-choice monetary risk-taking game. In addition to investigating general neural recruitment by risky decision-making, we also modeled each participant's running total of monetary earnings in order to determine areas of activation that correlated with cumulative reward. We found that ADP and CON showed few differences in behavior or in mesolimbic activation by choice for, and receipt of, risky gains. However, when including a cumulative-earnings covariate, ADP exhibited heightened striatal activation that correlated with total earnings during the choice event in the task. The heightened contextual sensitivity of striatal responses to cumulative earnings in ADP may represent a general neurobiological affective substrate for development of automatized instrumental behavior.
    Addiction Biology 05/2014; 20(3). DOI:10.1111/adb.12147 · 5.93 Impact Factor