Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.).

Molecular Phylogenetics, Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
Development Genes and Evolution (Impact Factor: 2.18). 12/2009; 219(9-10):523-30. DOI: 10.1007/s00427-009-0308-6
Source: PubMed

ABSTRACT Regulatory gene expression during the patterning of molluscan shells has only recently drawn the attention of scientists. We show that several Hox genes are expressed in association with the shell gland and the mantle in the marine vetigastropod Gibbula varia (L.). The expression of Gva-Hox1, Gva-Post2, and Gva-Post1 is initially detected in the trochophore larval stage in the area of the shell field during formation of embryonic shell. Later, during development, these genes are expressed in the mantle demonstrating their continuous role in larval shell formation and differentiation of mantle edge that secretes the adult shell. Gva-Hox4 is expressed only late during the development of the veliger-like larva and may also be involved in the adult shell morphogenesis. Additionally, this gene also seems to be associated with secretion of another extracellular structure, the operculum. Our data provide further support for association of Hox genes with shell formation which suggest that the molecular mechanisms underlying shell synthesis may consist of numerous conserved pattern-formation genes. In cephalopods, the only other molluscan class in which Hox gene expression has been studied, no involvement of Hox genes in shell formation has been reported. Thus, our results suggest that Hox genes are coopted to various functions in molluscs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hox and ParaHox genes are involved in patterning the anterior-posterior body axis in metazoans during embryo development. Body plan evolution and diversification are affected by variations in the number and sequence of Hox and ParaHox genes, as well as by their expression patterns. For this reason Hox and ParaHox gene investigation in the phylum Mollusca is of great interest, as this is one of the most important taxa of protostomes, characterized by a high morphological diversity. The comparison of the works reviewed here indicates that species of molluscs, belonging to different classes, share a similar composition of Hox and ParaHox genes. Therefore evidence suggests that the wide morphological diversity of this taxon could be ascribed to differences in Hox gene interactions and expressions and changes in the Hox downstream genes rather than to Hox cluster composition. © 2014 Wiley Periodicals, Inc.
    genesis 12/2014; 52(12). DOI:10.1002/dvg.22839 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species. Results: POU2, POU3, POU4 and POU6 orthologs were identified in transcriptomes derived from developmental stages and adult brain tissue of I. notoides. All four POU gene orthologs are expressed in different spatiotemporal combinations in the early embryo. Ino-POU2 is expressed in the gills and the palliovisceral, pedal, and optic ganglia of stage 19 to 20 embryos, whereas the cerebral and palliovisceral ganglia express Ino-POU3. Ino-POU4 is expressed in the optic and palliovisceral ganglia and the arms/intrabrachial ganglia of stage 19 to 20 individuals. Ino-POU6 is expressed in the palliovisceral ganglia during early development. In stage 25 embryos expression domains include the intrabrachial ganglia (Ino-POU3) and the pedal ganglia (Ino-POU6). All four POU genes are strongly expressed in large areas of the brain of stage 24 to 26 individuals. Expression could not be detected in late prehatching embryos (approximately stage 27 to 30). Conclusions: The expression of four POU genes in unique spatiotemporal combinations during early neurogenesis and sensory organ development of I. notoides suggests that they fulfill distinct tasks during early brain development. Comparisons with other bilaterian species reveal that POU gene expression is associated with anteriormost neural structures, even between animals for which these structures are unlikely to be homologous. Within lophotrochozoans, POU3 and POU4 are the only two genes that have been comparatively investigated. Their expression patterns are broadly similar, indicating that the increased complexity of the cephalopod brain is likely due to other unknown factors.
    EvoDevo 11/2014; 5(41). DOI:10.1186/2041-9139-5-41 · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Homeobox genes are involved in various aspects of the development of multicellular animals, including anterior-posterior patterning of the body plan. We performed a genomic survey of homeobox genes in the Japanese pearl oyster, Pinctada fucata, and annotated 92 homeobox-containing genes and five homeobox-less Pax genes. This species possesses 10 or 11 Hox genes. We annotated another homeobox genes that cover 77 out of the 111 gene families identified in the amphioxus genome. Investigation of these repertoires of homeobox genes will shed new light on the comparatively less well-understood lophotrochozoan development.
    ZOOLOGICAL SCIENCE 10/2013; 30(10):851-857. DOI:10.2108/zsj.30.851 · 0.88 Impact Factor


Available from
Jan 19, 2015