The "how" and "whys" of research: life scientists' views of accountability.

Center for Integration of Research on Genetics and Ethics, Stanford University, Palo Alto, CA, USA.
Journal of medical ethics (Impact Factor: 1.69). 12/2009; 35(12):762-7. DOI: 10.1136/jme.2009.031781
Source: PubMed

ABSTRACT To investigate life scientists' views of accountability and the ethical and societal implications of research.
Qualitative focus group and one-on-one interviews.
45 Stanford University life scientists, including graduate students, postdoctoral fellows and faculty.
Two main themes were identified in participants' discussions of accountability: (1) the "how" of science and (2) the "why" of science. The "how" encompassed the internal conduct of research including attributes such as honesty and independence. The "why," or the motivation for conducting research, was two-tiered: first was the desire to positively impact the research community and science itself, and second was an interest in positively impacting the external community, broadly referred to as society. Participants noted that these motivations were influenced by the current systems of publications, grants and funding, thereby supporting a complex notion of boundary-setting between science and non-science. In addition, while all participants recognised the "how" of science and the two tiers of "why," scientists expressed the need to prioritise these domains of accountability. This prioritisation was related to a researcher's position in the academic career trajectory and to the researcher's subsequent "perceived proximity" to scientific or societal concerns. Our findings therefore suggest the need for institutional change to inculcate early-stage researchers with a broader awareness of the implications of their research. The peer review processes for funding and publication could be effective avenues for encouraging scientists to broaden their views of accountability to society.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Responsibility within life science research is a highly scrutinised field. Increasingly, scientists are presented with a range of duties and expectations regarding their conduct within the research setting. In many cases, these duties are presented deontologically, forgoing extensive discussion on how these are practically implemented into the minutiae of daily research practices. This de-contextualized duty has proven problematic when it comes to practical issues of compliance, however it is not often considered as a fundamental aspect of building ethics discourse. This paper examines this issue in detail, particularly focusing on how differences in the contrasts between the ideal and real physical research environments cause conceptual problems for scientists and retard ethical engagement. Such issues are particularly pertinent in low- and middle-income countries. This paper combines theoretical and empirical analyses using the concept of "dual-use" as a focalizing topic. The data show that the research environment acts as an intimate component in the interpretation and implementation of ethical actions.
    Science and Engineering Ethics 02/2014; 21(1). DOI:10.1007/s11948-013-9506-8 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or "nudges" are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The study shows that basic researchers' support for soft incentives is such that the transformative value of fundamental investigations can be increased without affecting the spirit of the basic research and scientists' work satisfaction. After discussing the findings, we suggest a few examples of nudges and discuss one in more detail.
    01/2014; 3:20. DOI:10.12688/f1000research.3-20.v1