Reduction of biofilm formation with trisodium citrate in haemodialysis catheters: a randomized controlled trial

Department of Nephrology and Dialysis, Department of Medical Microbiology and Infection Control, Saint Lucas Andreas Hospital, Amsterdam, The Netherlands.
Nephrology Dialysis Transplantation (Impact Factor: 3.49). 11/2009; 25(4):1213-7. DOI: 10.1093/ndt/gfp651
Source: PubMed

ABSTRACT Formation of an intraluminal microbial biofilm is noted to play a significant role in the development of catheter-related infections (CRIs). Recently, it has been demonstrated that trisodium citrate (TSC) has superior antimicrobial effects over heparin for catheter locking. In this randomized controlled trial, we compared the influence of catheter locking with heparin and TSC on the in vivo intraluminal biofilm formation in haemodialysis catheters.
Six patients were studied from the time of catheter insertion for haemodialysis treatment. They were randomly assigned to TSC 30% or heparin 5000 U/ml for catheter locking for the duration of 1 month. After elective guidewire exchange of the catheter, the locking solution was also changed. After removal, catheters were dissected in three segments and examined by standardized scanning electron microscopy (SEM) to assess quantitative biofilm formation. Furthermore, standardized cultures of all segments were performed to identify any microorganisms.
In catheters filled with TSC, the average coverage by biofilm was 16% versus 63% in the heparin group (P < 0.001). A total of eight subsegments were associated with local catheter infection in the patients who were randomized to heparin locking versus three subsegments who were assigned to TSC (P < 0.05).
Our study demonstrates that using TSC 30% for catheter locking reduces the formation of microbial biofilm in haemodialysis catheters and culture-positive colonization. It is likely that this is the explanation for the observed prevention of CRIs by TSC locking.

  • [Show abstract] [Hide abstract]
    ABSTRACT: L’infection liée aux cathéters veineux centraux, événement grave en grande partie évitable, est la principale cause de bactériémie nosocomiale. Les bactériémies associées aux cathéters et liées aux cathéters doivent être bien distinguées. En l’absence de signes locaux patents, de sepsis sévère, d’immunodépression ou de matériel prothétique en place, la réalisation d’hémocultures qualitatives comparatives par le cathéter et en périphérie peut faire le diagnostic d’implication du cathéter sans obliger à son ablation. Des taux de bactériémies liées aux cathéters (définition du consensus français) supérieurs à 1 pour 1000 journéescathéters doivent être considérés comme inacceptables. La mise en place d’un programme de prévention en réanimation est réalisable et le plus souvent efficace pour faire diminuer les taux d’infections, motiver et restructurer les équipes de soins. Si les taux d’infections sont élevés, la mise en place de mesures simples (renforcement de l’hygiène des mains, asepsie chirurgicale à la pose, solutions antiseptiques contenant de l’alcool, voie sous-clavière préférentielle, procédure d’entretien des cathéters et des lignes de perfusion, réfection immédiate des pansements souillés ou décollés, ablation des cathéters inutiles) et adaptées au mode de fonctionnement du service sont efficaces. Une gouvernance claire et une rétroinformation sont indispensables au succès de ces programmes d’amélioration de la qualité des soins. Si les taux restent élevés, ou si l’on veut aller plus loin, les pansements imprégnés de chlorhexidine permettent de diminuer encore le risque d’infection. L’utilisation des cathéters imprégnés d’agents antimicrobiens doit être limitée aux situations d’échec de la politique globale de prévention.
    Réanimation 07/2013; 22(4). DOI:10.1007/s13546-013-0685-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioassays involve multi-stage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Using microfluidic technology to integrate and automate all these steps in a single chip device is highly desirable in many practical applications such as clinical diagnostic and in-field environmental testing. We have developed self-contained and fully integrated biochip systems for immunoassay and DNA analysis. These microfluidic biochip devices can perform detection of multiple bioagents (including antigens and DNA) using electrochemical detection methods. Microfluidic mixer, valves, pumps, channels, chambers, and Combimatrix microelectrode array are integrated to perform parallel immunoassays to detect infectious particles (viruses and bacteria) from complex biological samples in a single, fully automated biochip device. All microfluidic components use very simple and inexpensive approaches in order to reduce chip complexity. Back-end detection is accomplished using an enzyme-based electrochemical detection method that has many advantages including high sensitivity ( approximately fM) and simple apparatus. The sensor is a miniaturized array of individually addressable microelectrodes controlled by active CMOS circuitry. Pathogenic bacteria and DNA detections are both demonstrated. The devices with capabilities of on-chip sample processing and detection provide a cost-effective solution to direct sample-to-answer biological analysis for point-of-care genetic analysis, disease diagnosis, and in-field bio-threat detection.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 02/2004; 7:5394. DOI:10.1109/IEMBS.2004.1404507
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation. As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future.
    Applied Microbiology and Biotechnology 09/2010; 88(2):451-9. DOI:10.1007/s00253-010-2805-y · 3.81 Impact Factor
Show more