Article

Genetic influences on language, reading, and mathematics skills in a national sample: an analysis using the National Longitudinal Survey of Youth.

The Ohio State University, Human Development and Family Science, 1787 Neil Avenue, 135 Campbell Hall, Columbus, OH 43204, USA.
Language Speech and Hearing Services in Schools (Impact Factor: 1.32). 11/2009; 41(1):118-28. DOI: 10.1044/0161-1461(2009/08-0052)
Source: PubMed

ABSTRACT The present study had two purposes: provide an illustration of use of the National Longitudinal Survey of Youth 1979 Children's (CNLSY; U.S. Department of Labor, 2009) database and use the database to seek convergent evidence regarding the magnitude and significance of genetic effects influencing low and typical performers on measures of language, reading, and mathematics.
A kinship algorithm that assigned a degree of genetic relatedness to all available pairings was applied to the 1994 wave of the CNLSY sample. Four cognitive achievement outcomes related to language, reading, and mathematics were analyzed across the general sample as well as for children selected below the lowest 20(th) percentile.
The tests of receptive vocabulary, decoding, reading comprehension, and mathematics all suggested estimates of group heritability and full sample heritability of moderate effect sizes, and all estimates were statistically significant. Furthermore, all estimates were within confidence intervals of previously reported estimates from twin and adoption studies.
The present study provides additional support for significant genetic effects across low and wide ranges of specific achievement. Moreover, this study supports that genetic influences on reading, language, and mathematics are generalizable beyond twin and adoption studies.

1 Bookmark
 · 
59 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Head motion (HM) is a critical confounding factor in functional MRI. Here we investigate whether HM during resting state functional MRI (RS-fMRI) is influenced by genetic factors in a sample of 462 twins (65% female; 101 MZ (monozygotic) and 130 DZ (dizygotic) twin pairs; mean age: 21 (SD=3.16), range 16-29). Heritability estimates for three HM components-mean translation (MT), maximum translation (MAXT) and mean rotation (MR)-ranged from 37 to 51%. We detected a significant common genetic influence on HM variability, with about two-thirds (genetic correlations range 0.76-1.00) of the variance shared between MR, MT and MAXT. A composite metric (HM-PC1), which aggregated these three, was also moderately heritable (h(2)=42%). Using a sub-sample (N=35) of the twins we confirmed that mean and maximum translational and rotational motions were consistent "traits" over repeated scans (r=0.53-0.59); reliability was even higher for the composite metric (r=0.66). In addition, phenotypic and cross-trait cross-twin correlations between HM and resting state functional connectivities (RS-FCs) with Brodmann areas (BA) 44 and 45, in which RS-FCs were found to be moderately heritable (BA44: h(2)̅=0.23 (sd=0.041), BA45: h(2)̅=0.26 (sd=0.061) ), indicated that HM might not represent a major bias in genetic studies using FCs. Even so, the HM effect on FC was not completely eliminated after regression. HM may be a valuable endophenotype whose relationship with brain disorders remains to be elucidated.
    NeuroImage 08/2014; · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine (a) the general knowledge bases demonstrated by school-based speech-language pathologists (SLPs) in the area of genetics, (b) the confidence levels of SLPs in providing services to children and their families with genetic disorders/syndromes, (c) the attitudes of SLPs regarding genetics and communication disorders, (d) the primary sources used by SLPs to learn about genetic disorders/syndromes, and (e) the association between general knowledge, confidence, attitudes, the number of years of experience working as an SLP, and the number of children currently provided services with genetic disorders/syndromes on SLPs’ caseloads. Survey data from a nationwide sample of 533 SLPs was analyzed. Results showed SLPs earned a median knowledge score about genetics of 66% correct responses. Their mean confidence and attitude ratings were in the “unsure” categories while they reported they learned about genetics from three main sources, (a) self-study via web and internet-based searches, (b) on-the-job training and (c) popular press magazines and newspapers. Analyses revealed that Confidence summary scores, Attitude Summary scores, the number of children with genetic disorders/syndromes on SLPs’ caseloads are positively associated with the ratings of participants with the highest Knowledge scores.Learning outcomes: Readers will be able to (a) explain the important links between developmental and communication disabilities and genetics, (b) describe the associations between knowledge about genetics and confidence, attitudes, and the number of children with genetic disorders/syndromes on their caseloads, and (c) outline the clinical and theoretical implications of the results from this study.
    Journal of Communication Disorders 01/2013; 46(1):100–110. · 1.52 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Jun 5, 2014