Article

Ca2+ binding to site I of the cardiac Ca2+ pump is sufficient to dissociate phospholamban.

Department of Medicine, Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana 46202, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2009; 285(5):3253-60. DOI: 10.1074/jbc.M109.080820
Source: PubMed

ABSTRACT Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca(2+). Recent cross-linking studies have suggested that PLB binding and Ca(2+) binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca(2+)-ATPase, preventing formation of E1, the conformation that binds two Ca(2+) (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca(2+) binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca(2+) pump. Seven SERCA2a mutants with amino acid substitutions at Ca(2+)-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca(2+) on N30C-PLB cross-linking to Lys(328) of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca(2+)-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca(2+); however, all were phosphorylatable by P(i) to form E2P. Ca(2+) inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca(2+)-ATPase mutant was observed in the absence of Ca(2+). Importantly, however, micromolar Ca(2+) inhibited PLB cross-linking only to mutants retaining a functional Ca(2+)-binding site I. The dynamic equilibrium between Ca(2+) pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca(2+)-binding site regulating the physical association between PLB and SERCA2a.

0 Bookmarks
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca2+ ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) mutated, inhibition of SERCA is relieved. 13C and 15N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. 13C=O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. 15N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16 phosphorylated PLB (P-PLB) and R9C mutated PLB (R9C-PLB) all have a very dynamic domain Ib and the transmembrane domain has an immobile component. 15N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggests the more extended and disorder forms of PLB may relate to inhibition relief.
    The Journal of Physical Chemistry B 02/2014; 118(8). DOI:10.1021/jp500316s · 3.38 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to characterize the interaction between phospholamban (PLB) and the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA) under conditions that relieve SERCA inhibition. Unphosphorylated PLB inhibits SERCA in cardiac SR, but inhibition is relieved by either micromolar Ca(2+) or PLB phosphorylation. In both cases, it has been proposed that inhibition is relieved by dissociation of the complex. To test this hypothesis, we attached fluorophores to the cytoplasmic domains of SERCA and PLB, and reconstituted them functionally in lipid bilayers. TR-FRET, which permitted simultaneous measurement of SERCA-PLB binding and structure, was measured as a function of PLB phosphorylation and [Ca(2+)]. In all cases, two structural states of the SERCA-PLB complex were resolved, probably corresponding to the previously described T and R structural states of the PLB cytoplasmic domain. Phosphorylation of PLB at S16 completely relieved inhibition, partially dissociated the SERCA-PLB complex, and shifted the T/R equilibrium within the bound complex toward the R state. Since the PLB concentration in cardiac SR is at least 10 times that in our FRET measurements, we calculate that most of SERCA contains bound phosphorylated PLB in cardiac SR, even after complete phosphorylation. 4 μM Ca(2+) completely relieved inhibition but did not induce a detectable change in SERCA-PLB binding or cytoplasmic domain structure, suggesting a mechanism involving structural changes in SERCA's transmembrane domain. We conclude that Ca(2+) and PLB phosphorylation relieve SERCA-PLB inhibition by distinct mechanisms, but both are achieved primarily by structural changes within the SERCA-PLB complex, not by dissociation of that complex.
    Biochemical and Biophysical Research Communications 05/2014; DOI:10.1016/j.bbrc.2014.04.166 · 2.28 Impact Factor