Article

Characterization of TEM1/endosialin in human and murine brain tumors

Department of Neurosurgery, The University of Rochester, Rochester, NY, USA.
BMC Cancer (Impact Factor: 3.32). 11/2009; 9:417. DOI: 10.1186/1471-2407-9-417
Source: PubMed

ABSTRACT TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models.
In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice.
TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, alphaSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts.
TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1/endosialin and its expression profile in primary and metastatic brain tumors support efforts to therapeutically target this protein, potentially via antibody mediated drug delivery strategies.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventional chemotherapy of ovarian cancer often fails because of initiation of drug resistance and/or side effects and trace of untouched remaining cancerous cells. This highlights an urgent need for advanced targeted therapies for effective remediation of the disease using a cytotoxic agent with immunomodulatory effects, such as shikonin (SHK). Based on preliminary experiments, we found SHK to be profoundly toxic in ovarian epithelial cancer cells (OVCAR-5 and ID8 cells) as well as in normal ovarian IOSE-398 cells, endothelial MS1 cells, and lymphocytes. To limit its cytotoxic impact solely to tumor cells within the tumor microenvironment (TME), we aimed to engineer SHK as polymeric nanoparticles (NPs) with targeting moiety toward tumor microvasculature. To this end, using single/double emulsion solvent evaporation/diffusion technique with sonication, we formulated biodegradable NPs of poly(lactic-co-glycolic acid) (PLGA) loaded with SHK. The surface of NPs was further decorated with solubilizing agent polyethylene glycol (PEG) and tumor endothelial marker 1 (TEM1)/endosialin-targeting antibody (Ab) through carbodiimide/N-hydroxysuccinimide chemistry. Having characterized the physicochemical and morphological properties of NPs, we studied their drug-release profiles using various kinetic models. The biological impact of NPs was also evaluated in tumor-associated endothelial MS1 cells, primary lymphocytes, and epithelial ovarian cancer OVCAR-5 cells. Based on particle size analysis and electron microscopy, the engineered NPs showed a smooth spherical shape with size range of 120 to 250 nm and zeta potential value of -30 to -40 mV. Drug entrapment efficiency was ~80%-90%, which was reduced to ~50%-60% upon surface decoration with PEG and Ab. The liberation of SHK from NPs showed a sustained-release profile that was best fitted with Wagner log-probability model. Fluorescence microscopy and flow cytometry analysis showed active interaction of Ab-armed NPs with TEM1-positive MS1 cells, but not with TEM1-negative MS1 cells. While exposure of the PEGylated NPs for 2 hours was not toxic to lymphocytes, long-term exposure of the Ab-armed and PEGylated NPs was significantly toxic to TEM1-positive MS1 cells and OVCAR-5 cells. Based on these findings, we propose SHK-loaded Ab-armed PEGylated PLGA NPs as a novel nanomedicine for targeted therapy of solid tumors.
    International Journal of Nanomedicine 01/2014; 9:1855-1870. DOI:10.2147/IJN.S51880 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeted nanomedicine holds promise to find clinical use in other medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their non-targeted counterparts. We analyze diverse aspects of endothelial nanomedicine including: i) circulation and targeting of carriers with diverse geometries; ii) multivalent interactions of carrier with endothelium; iii) anchoring to multiple determinants; iv) accessibility of binding sites and cellular response to their engagement; v) role of cell phenotype and microenvironment in targeting; vi) optimization of targeting by lowering carrier avidity; vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands; and, viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
    ACS Nano 04/2014; 8(5). DOI:10.1021/nn500136z · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD248 (Endosialin) is a type 1 membrane protein involved in developmental and pathological angiogenesis through its expression on pericytes and regulation of PDGFRβ signalling. Here we explore the function of CD248 in skeletal muscle angiogenesis. Two distinct forms of capillary growth (splitting and sprouting) can be induced separately by increasing microcirculatory shear stress (chronic vasodilator treatment) or by inducing functional overload (extirpation of a synergistic muscle). We show that CD248 is present on pericytes in muscle and that CD248-/- mice have a specific defect in capillary sprouting. In contrast, splitting angiogenesis is independent of CD248 expression. Endothelial cells respond to pro-sprouting angiogenic stimulus by up-regulating gene expression for HIF1α, angiopoietin 2 and its receptor TEK, PDGF-B and its receptor PDGFRβ; this response did not occur following a pro-splitting angiogenic stimulus. In wildtype mice, defective sprouting angiogenesis could be mimicked by blocking PDGFRβ signalling using the tyrosine kinase inhibitor Imatinib mesylate. We conclude that CD248 is required for PDGFRβ-dependant capillary sprouting but not splitting angiogenesis, and identify a new role for CD248 expressed on pericytes in the early stages of physiological angiogenesis during muscle remodelling.
    PLoS ONE 09/2014; 9(9):e107146. DOI:10.1371/journal.pone.0107146 · 3.53 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jul 8, 2014