Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy.

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA 63130.
Journal of innovative optical health sciences 10/2008; 1(2):207-215. DOI: 10.1142/S1793545808000212
Source: PubMed

ABSTRACT Photoacoustic molecular imaging, combined with the reporter-gene technique, can provide a valuable tool for cancer research. The expression of the lacZ reporter gene can be imaged using photoacoustic imaging following the injection of X-gal, a colorimetric assay for the lacZ-encoded enzyme β-galactosidase. Dual-wavelength photoacoustic microscopy was used to non-invasively image the detailed morphology of a lacZ-marked 9L gliosarcoma and its surrounding microvasculature simultaneously in vivo, with a superior resolution on the order of 10 μm. Tumor-feeding vessels were found, and the expression level of lacZ in tumor was estimated. With future development of new absorption-enhancing reporter-gene systems, we anticipate this strategy can lead to a better understanding of the role of tumor metabolism in cancer initiation, progression, and metastasis, and in its response to therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Optoacoustic microscopy (OAM) is an emerging technology combining the beneficial features of optical contrast and ultrasound resolution, to form a hybrid imaging technique capable of multi-scale, high-contrast and high-resolution imaging through optically scattering biological tissues. In the past 15 years, two system modifications have been developed for optoacoustic / photoacoustic microscopy: acoustic-resolution AR-OAM and optical-resolution OR-OAM. Typically, acoustic resolution systems can image deeper tissues structures, however, with resolution at least an order of magnitude worse than the systems of optical-resolution. It would be attractive for variety of biomedical applications to attain high (submicron) resolution at a depth exceeding the present limit of the optical resolution optoacoustic microscopy. Here we introduce a novel, all-optical method for OAM, in which not only thermal energy deposition, but also optoacoustic signal detection is achieved optically. In our design the probe laser beam was used as an ultrawide-band ultrasonic transducer. In this method the acoustic pressure wave amplitude is proportional to the angle of deflection of the probing CW laser beam incident on a balanced dual photodiode. Such laser beam deflection (LBD) method overcomes the limitations of conventional piezoelectric ultrasound transducers and optical interferometers. LBD method allows one to use high numerical aperture objectives for better focusing, avoid distortions associated with the system elements that separate optical and acoustic paths, and provides better sensitivity than any optical interferometer. It also provides a non-contact method that is insensitive to optical and acoustic artifacts typical of backward mode of optoacoustic imaging. The LBD sensitivity depends on a large number of system parameters such as probe beam power, spot size, interaction length, optical refraction index of the coupling medium, laser wavelength, photodiode sensitivity, proximity to the optoacoustic source, and thus, can be optimized. The basic setup of OR-LBD-OAM shows high sensitivity competitive with commercial ultrasonic transducers. We report first images of biological cells and tissues obtained using this technique.
    Conference on Photons Plus Ultrasound: Imaging and Sensing; 03/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoacoustic imaging allows absorption-based high-resolution spectroscopic in vivo imaging at a depth beyond that of optical microscopy. Until recently, photoacoustic imaging has largely been restricted to visualizing the vasculature through endogenous haemoglobin contrast, with most non-vascularized tissues remaining invisible unless exogenous contrast agents are administered. Genetically encodable photoacoustic contrast is attractive as it allows selective labelling of cells, permitting studies of, for example, specific genetic expression, cell growth or more complex biological behaviours in vivo. In this study we report a novel photoacoustic imaging scanner and a tyrosinase-based reporter system that causes human cell lines to synthesize the absorbing pigment eumelanin, thus providing strong photoacoustic contrast. Detailed three-dimensional images of xenografts formed of tyrosinase-expressing cells implanted in mice are obtained in vivo to depths approaching 10 mm with a spatial resolution below 100 μm. This scheme is a powerful tool for studying cellular and genetic processes in deep mammalian tissues.
    Nature Photonics 03/2015; 9:239. DOI:10.1038/nphoton.2015.22 · 29.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.

Full-text (2 Sources)

Available from
May 28, 2014