Article

The Neuroprotective Effect of Antidepressant Drug via Inhibition of TIEG2-MAO B Mediated Cell Death.

Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216.
Drug discoveries & therapeutics 10/2008; 2(5):289-295.
Source: PubMed

ABSTRACT Alcohol use disorders are common in the world. However, the development of novel drugs to prevent alcohol-induced brain damage is based upon an improved neurobiological understanding on the cellular changes that take place in the brain. We previously reported that ethanol exposure lowered cell proliferation and increased cell apoptosis in all cell types, but affects brain cell lines the most, while ethanol and the anti-depressant drug deprenyl, an monoamine oxidase B (MAO B) inhibitor, exposure in unison increases cell viability. Here we investigated the molecular mechanism of the neuroprotective effect of deprenyl (0.25 nM) on ethanol (75 mM)-induced harmful effect. Transforming growth factor-beta-inducible early gene 2 (TIEG2) is an activator for MAO B. MAO B levels increase has been shown to contribute to neuronal cell death. This study uses the neuronal cell line to address whether ethanol induced cell death is through the activation of TIEG2-MAO B apoptotic pathway, and whether deprenyl protects cells from the effects of alcohol through the inhibition of this pathway. We have found that ethanol exposure increases the levels of mRNA and protein/catalytic activity for both TIEG2 and MAO B, while ethanol and deprenyl exposure in unison reduce the expression of both TIEG2 and MAO B, however it increases cell viability. Additionally, TIEG2-overexpressed cells display more cellular death-induced by ethanol than control cells. In summary, this study demonstrates the role of TIEG2 in ethanol induced cell death. The inhibition of the TIEG2-MAO B pathway may be one of the mechanisms for the neuroprotective effect of deprenyl.

0 Followers
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biochemical pathways underlying alcohol abuse and dependence are not well understood, although brain cell loss and neurotoxicity have been reported in subjects with alcohol dependence. Monoamine oxidase B (MAO B; an enzyme that catabolizes neurotransmitters such as dopamine) is consistently increased in this psychiatric illness. MAO B has been implicated in the pathogenesis of alcohol dependence and alcohol-induced brain neurotoxicity. Recently, the cell growth inhibitor protein, Kruppel-like factor 11 (KLF11), has been reported to be an MAO transcriptional activator. KLF11 is also known as TIEG2 (transforming growth factor-beta-inducible early gene 2) and mediates apoptotic cell death. This study investigates the protein expression of KLF11 and its relationship with MAO B using human postmortem prefrontal cortex from subjects with alcohol dependence. Twelve subjects with alcohol dependence and the respective psychiatrically normal control subjects were investigated. Expression of KLF11 and MAO B proteins in the prefrontal cortex was measured by Western blot analysis. Correlation studies involving KLF11 and MAO B protein expression were performed. Localization of KLF11 in the human prefrontal cortex was also determined by immunohistochemistry. Levels of KLF11 protein were significantly increased by 44% (p < 0.03) in the postmortem prefrontal cortex of subjects with alcohol dependence as compared to age- and gender-matched, psychiatrically normal control subjects. Furthermore, KLF11 levels were significantly and positively correlated with both the increased MAO B protein levels and blood alcohol content in alcohol-dependent subjects. In addition, KLF11 protein expression was visualized in both neuronal and glial cells. This novel study shows the important role of KLF11, an MAO transcriptional activator, in human alcohol dependence. It further supports that the KLF11-MAO B cell death cascade may contribute to chronic alcohol-induced brain damage. This argues a case for KLF11-MAO B inhibition as a novel therapeutic strategy that may impact this highly prevalent illness.
    Alcoholism Clinical and Experimental Research 08/2013; 38(1). DOI:10.1111/acer.12229 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress detrimentally affects the brain and body and can lead to or be accompanied by depression. Although stress and depression may contribute to each other, the exact molecular mechanism underlying the effects is unclear. However, there is a correlation between stress and an increase in glucocorticoid secretion which causes a subsequent increase in monoamine oxidase (MAO) activity during stress. Consequently, MAO inhibitors have been used as traditional antidepressant drugs. Cellular treatment with the synthetic glucocorticoid, dexamethasone (a cellular stressor), has been reported to markedly increase both MAO A and MAO B catalytic activities, as well as apoptosis. This study compares the neuroprotective abilities of M30 (a new generation inhibitor of both MAO A and MAO B) with rasagiline (Azilect(®), another new MAO B inhibitor) and selegiline (Deprenyl(®), a traditional MAO B inhibitor) in the prevention of dexamethasone-induced brain cell death and MAO activity in human neuroblastoma cells, SH-SY5Y. M30 demonstrated the highest inhibitory effect on MAO A; however, M30 showed the lowest inhibitory effect on MAO B enzymatic activity in comparison to rasagiline and selegiline. Although, M30 exhibited the greatest neuroprotective effect by decreasing cell death rates and apoptotic DNA damage compared to rasagiline and selegiline, these neuroprotective effects of M30 were, overall, similar to rasagiline. Summarily, M30 has a generally greater impact on neuroprotection than the MAO B inhibitors, selegiline and rasagiline. Our results suggest that M30 may have great potential in alleviating disorders involving increases in both MAO A and MAO B, such as stress-induced disorders.
    Frontiers in Neuroscience 11/2010; 4:180. DOI:10.3389/fnins.2010.00180
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain cell loss has been reported in subjects with alcoholism. However, the molecular mechanisms are unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monoamine oxidase B (MAO B) reportedly play a role in cellular dysfunction with regards to ethanol exposure. We have recently reported that GAPDH protein expression was increased in the brains of rats fed with ethanol. Furthermore, GAPDH interacts with the transcriptional activator, transforming growth factor-beta-inducible early gene 2 (TIEG2), to augment TIEG2-mediated MAO B activation, resulting in neuronal cell damage due to ethanol exposure. The current study investigates whether the TIEG2-MAO B cascade is also active in the brains of rats fed with ethanol. Ten ethanol-preferring rats were fed with a liquid diet containing ethanol, with increasing amounts of ethanol up to a final concentration of 6.4% representing a final diet containing 36% of calories for 28 days. Ten control rats were fed the liquid diet without ethanol. The expression of TIEG2 protein, MAO B mRNA levels, MAO B catalytic activity, and the levels of anti-apoptotic protein Bcl 2 and apoptotic protein caspase 3 were determined in the prefrontal cortex of the rats. Ethanol significantly increased protein levels of TIEG2, active caspase 3, MAO B mRNA and enzyme activity, but significantly decreased Bcl 2 protein expression compared to control rats. In summary, ethanol increases the TIEG2-MAO B brain cell death cascade in rat brains, suggesting that the TIEG2-MAO B pathway is a novel pathway for brain cell damage resulting from ethanol exposure, and may contribute to chronic alcohol-induced brain damage.
    Neurotoxicity Research 03/2010; 19(4):511-8. DOI:10.1007/s12640-010-9164-4 · 3.15 Impact Factor

Preview

Download
0 Downloads
Available from