Article

Acoustical mimicry in a predatory social parasite of ants.

Department of Animal and Human Biology, University of Turin, 10123 Turin, Italy.
Journal of Experimental Biology (Impact Factor: 3). 12/2009; 212(Pt 24):4084-90. DOI: 10.1242/jeb.032912
Source: PubMed

ABSTRACT Rapid, effective communication between colony members is a key attribute that enables ants to live in dominant, fiercely protected societies. Their signals, however, may be mimicked by other insects that coexist as commensals with ants or interact with them as mutualists or social parasites. We consider the role of acoustics in ant communication and its exploitation by social parasites. Social parasitism has been studied mainly in the butterfly genus Maculinea, the final instar larvae of which are host-specific parasites of Myrmica ants, preying either on ant grubs (predatory Maculinea) or being fed by trophallaxis (cuckoo Maculinea). We found similar significant differences between the stridulations of model queen and worker ant castes in both Myrmica sabuleti and Myrmica scabrinodis to that previously reported for Myrmica schencki. However, the sounds made by queens of all three Myrmica species were indistinguishable, and among workers, stridulations did not differ significantly in two of three species-pairs tested. Sounds recorded from the predatory caterpillars and pupae of Maculinea arion had similar or closer patterns to the acoustics of their host Myrmica sabuleti than those previously reported for the cuckoo Maculinea rebeli and its host Myrmica schencki, even though Maculinea rebeli caterpillars live more intimately with their host. We conclude that chemical mimicry enables Maculinea larvae to be accepted as colony members by worker ants, but that caterpillars and pupae of both predatory and cuckoo butterflies employ acoustical mimicry of queen ant calls to elevate their status towards the highest attainable position within their host's social hierarchy.

1 Bookmark
 · 
716 Views
  • Source
    European Journal of Entomology 01/2011; 108:53-62. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phengaris (Maculinea) butterflies are social parasites of Myrmica ant colonies. Larvae of the parasite are adopted by the ant workers into the colonies. Apparently, chemical signals are used by Phengaris nausithous Bergsträsser larvae to mimic those of the host brood to be recognized by the ants. In the present study, chemical extracts of ant brood and butterfly larvae using four different solvents are tested in behavioural choice assays in search of compounds involved in the adoption process. Tetracosane is the main shared compound in all brood extracts of Myrmica rubra L. and in all larvae of P. nausithous. The attractiveness of tetracosane for M. rubra workers is confirmed by testing synthetic tetracosane in behavioural choice assays, suggesting that the adoption ritual may be initiated by tetracosane.
    Physiological Entomology 12/2014; 40(1). DOI:10.1111/phen.12083 · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myrmica ants have been model species for studies in a variety of disciplines, including insect physiology, chemical communication, ant social dynamics, ant population, community ecology, and ant interactions with other organisms. Species belonging to the genus Myrmica can be found in virtually every habitat within the temperate regions of the northern hemisphere and their biology and systematics have been thoroughly studied. These ants serve as hosts to highly diverse parasitic organisms from socially parasitic butterfly caterpillars to microbes, and many Myrmica species even evolved into parasitizing species of their own genus. These parasites have various impacts both on the individuals and on the social structure of their hosts, ranging from morphological malformations to reduction in colony fitness. A comprehensive review of the parasitic organisms supported by Myrmica and the effects of these organisms on individuals and on whole ant colonies has not yet been compiled. Here, we provide a review of the interactions of these organisms with Myrmica ants by discussing host and parasite functional, behavioral or physiological adaptations. In addition, for all “symbiont groups” of Myrmica ants described in this paper, we examine the present limitations of the knowledge at present of their impact on individuals and host colony fitness. In conclusion, we argue that Myrmica ants serve as remarkable resource for the evolution of a wide variety of associated organisms. M. Witek and F. Barbero equally contributed to the manuscript.
    Insectes Sociaux 11/2014; 61(4-4):307-323. DOI:10.1007/s00040-014-0362-6 · 1.31 Impact Factor

Full-text

Download
137 Downloads
Available from
May 22, 2014