Article

A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Developmental Biology (Impact Factor: 3.64). 11/2009; 340(2):200-8. DOI: 10.1016/j.ydbio.2009.11.020
Source: PubMed

ABSTRACT Comparisons of orthologous developmental gene regulatory networks (GRNs) from different organisms explain how transcriptional regulation can, or cannot, change over time to cause morphological evolution and stasis. Here, we examine a subset of the GRN connections in the central vegetal pole mesoderm of the late sea star blastula and compare them to the GRN for the same embryonic territory of sea urchins. In modern sea urchins, this territory gives rise to skeletogenic mesoderm; in sea stars, it develops into other mesodermal derivatives. Orthologs of many transcription factors that function in the sea urchin skeletogenic mesoderm are co-expressed in the sea star vegetal pole, although this territory does not form a larval skeleton. Systematic perturbation of erg, hex, tbr, and tgif gene function was used to construct a snapshot of the sea star mesoderm GRN. A comparison of this network to the sea urchin skeletogenic mesoderm GRN revealed a conserved, recursively wired subcircuit operating in both organisms. We propose that, while these territories have evolved different functions in sea urchins and sea stars, this subcircuit is part of an ancestral GRN governing echinoderm vegetal pole mesoderm development. The positive regulatory feedback between these transcription factors may explain the conservation of this subcircuit.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules. Transcription factor proteins that bind these cis-regulatory modules may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using Protein Binding Microarray, Surface Plasmon Resonance, and in vivo reporter assays, we demonstrate an important difference in DNA binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. While both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in gene regulatory networks through modification of binding to secondary sites.
    Molecular Biology and Evolution 07/2014; · 14.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of various body plans results from the acquisition of novel structures, as well as the loss of existing structures. Some novel structures necessitate multiple evolutionary steps, requiring organisms to overcome the intermediate steps, which might be less adaptive or neutral. To examine this issue, echinoderms might provide an ideal experimental system. A larval skeleton is acquired in some echinoderm lineages, such as sea urchins, probably via the co-option of the skeletogenic machinery that was already established to produce the adult skeleton. The acquisition of a larval skeleton was found to require multiple steps and so provides a model experimental system for reproducing intermediate evolutionary stages. The fact that echinoderm embryology has been studied with various natural populations also presents an advantage. © 2014 Wiley Periodicals, Inc.
    genesis 02/2014; 52(3). · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Echinoids (sea urchins) are divided into two major groups - cidaroids (a 'primitive' group) and euechinoids (a 'derived' group). The cidaroids are a promising model species for understanding the ancestral developmental mechanisms in echinoids, but little is known about the molecular mechanisms of cidaroid development. In euechinoids, skeletogenic mesenchyme cell specification is regulated by the double-negative gate (DNG), in which hesC represses the transcription of the downstream mesenchyme specification genes (alx1, tbr and ets1), thereby defining the prospective mesenchyme region. To estimate the ancestral mechanism of larval mesenchyme cell specification in echinoids, the expression patterns and roles of mesenchyme specification genes in the cidaroid Prionocidaris baculosa were examined. The present study reveals that the expression pattern and function of hesC in P. baculosa were inconsistent with the DNG model, suggesting that the euechinoid-type DNG is not utilized during cidaroid mesenchyme specification. In contrast with hesC, the expression patterns and functions of alx1, tbr and ets1 were similar between P. baculosa and euechinoids. Based on these results, we propose that the roles of alx1, tbr and ets1 in mesenchyme specification were established in the common ancestor of echinoids, and that the DNG system was acquired in the euechinoid lineage after divergence from the cidaroid ancestor. The evolutionary timing of the establishment of the DNG suggests that the DNG was originally related to micromere and/or primary mesenchyme cell formation but not to skeletogenic cell differentiation.
    Development 06/2014; · 6.27 Impact Factor

Full-text (2 Sources)

Download
33 Downloads
Available from
May 22, 2014