Article

Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis.

Wellcome Trust Centre for Cell Biology, University of Edinburgh, UK.
Molecular cell (Impact Factor: 14.46). 11/2009; 36(4):583-92. DOI: 10.1016/j.molcel.2009.09.039
Source: PubMed

ABSTRACT Yeast ribosome synthesis requires 19 different RNA helicases, but none of their pre-rRNA-binding sites were previously known, making their precise functions difficult to determine. Here we identify multiple binding sites for the helicase Prp43 in the 18S and 25S rRNA regions of pre-rRNAs, using UV crosslinking. Binding in 18S was predominantly within helix 44, close to the site of 18S 3' cleavage, in which Prp43 is functionally implicated. Four major binding sites were identified in 25S, including helix 34. In strains depleted of Prp43 or expressing only catalytic point mutants, six snoRNAs that guide modifications close to helix 34 accumulated on preribosomes, implicating Prp43 in their release, whereas other snoRNAs showed reduced preribosome association. Prp43 was crosslinked to snoRNAs that target sequences close to its binding sites, indicating direct interactions. We propose that Prp43 acts on preribosomal regions surrounding each binding site, with distinct functions at different locations.

0 Bookmarks
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human mitochondrial ribosomes are specialized in the synthesis of 13 proteins, which are fundamental components of the oxidative phosphorylation system. The pathway of mitoribosome biogenesis, the compartmentalization of the process, and factors involved remain largely unknown. Here, we have identified the DEAD-box protein DDX28 as an RNA granule component essential for the biogenesis of the mitoribosome large subunit (mt-LSU). DDX28 interacts with the 16S rRNA and the mt-LSU. RNAi-mediated DDX28 silencing in HEK293T cells does not affect mitochondrial mRNA stability or 16S rRNA processing or modification. However, it leads to reduced levels of 16S rRNA and mt-LSU proteins, impaired mt-LSU assembly, deeply attenuated mitochondrial protein synthesis, and consequent failure to assemble oxidative phosphorylation complexes. Our findings identify DDX28 as essential during the early stages of mitoribosome mt-LSU biogenesis, a process that takes place mainly near the mitochondrial nucleoids, in the compartment defined by the RNA granules. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell reports. 02/2015; 17.
  • Source
    Nucleic Acids Research 01/2015; · 8.81 Impact Factor
  • Source
    Julien Robert-Paganin, Stéphane Réty, Nicolas Leulliot
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase's enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase.
    BioMed Research International 10/2014; · 2.71 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 31, 2014