Development of a new method for improved identification and relative quantification of unknown metabolites in complex samples: Determination of a triterpenoid metabolic fingerprint for the in situ characterization of Ganoderma bioactive compounds

Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
Journal of Separation Science (Impact Factor: 2.74). 12/2009; 32(23-24):4052-8. DOI: 10.1002/jssc.200900496
Source: PubMed


Ganoderma lucidum is a mushroom with a long history of medical applications. Research has demonstrated chemotherapeutic effects of G. lucidum in tissue culture, and bioactive fractions of the mushroom have been shown to contain high levels of triterpenoids and polysaccharides. In this study, we developed a new method for the detection of ganoderic acids and other triterpenes in Ganoderma mushroom extracts based on a post-biosynthetic stable isotope encoding technique. Overall, 57 doublets were identified as potential ganoderic acids and 11 of those matched with the database. Ganoderic acid A, F and H were confirmed by standards and their absolute concentrations were measured in GLT (GA A: 3.88 mg/g; GA F: 0.95 mg/g and GA H: 1.74 mg/g) and ReishiMax (GA A: 2.32 mg/g; GA F: 0.43 mg/g and GA H: 0.85 mg/g) extracts. The method was also used for the evaluation of bioavailability of triterpenes after an oral application and demonstrated the presence of G. lucidum triterpenes in plasma.

Download full-text


Available from: Daniel Sliva, Dec 11, 2014
  • Source
    • "A simple, rapid, and accurate HPLC method allowing the quantification of GA in different kinds of Lingzhi and their products was developed and validated (Huie and Di 2004; Tang et al. 2006a, b; Wang et al. 2007a, b, c; Keypour et al. 2010). So setting up the standard fingerprint and analysis methods of Lingzhi, and controlling the Lingzhi and its product quality have attracted attention in the academic circles worldwide (Gu and Weng 2008; Ding et al. 2009a, b; Adamec et al. 2009). Determination of triterpenoid content usually uses the GA-B as the standard. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A white-rot basidiomycete Ganoderma spp. has long been used as a medicinal mushroom in Asia, and it has an array of pharmacological properties for immunomodulatory activity. There have been many reports about the bioactive components and their pharmacological properties. In order to analyze the current status of Ganoderma products, the detailed process of cultivation of Ganoderma spp. and development of their products are restated in this review article. These include the breeding, cultivating, extracting bioactive component, and processing Ganoderma products, etc. This article will expand people's common knowledge on Ganoderma, and provide a beneficial reference for research and industrial production.
    Applied Microbiology and Biotechnology 12/2011; 93(3):941-63. DOI:10.1007/s00253-011-3780-7 · 3.34 Impact Factor
  • Source
    • "Moreover, we have previously identified some of the triterpenes in RM (e.g. ganoderic acids A, F, H, Mh, S, lucidenic acid B, D, D1, E1, L and methyl lucidenate G) [77], that can be used for the standardization of the active supplements or G. lucidum extracts. Our study is with agreement with previous study demonstrating stimulation of glucose uptake and activation of AMPK in rat muscle cells [78]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom Ganoderma lucidum, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells. 3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [³H]-glucose. RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes. Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies.
    BMC Complementary and Alternative Medicine 09/2011; 11(1):74. DOI:10.1186/1472-6882-11-74 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer is one of the most common cancers in men and women in the world. Previous molecular studies have revealed that deregulation of the ß-catenin signaling pathway plays a crucial role in the progression of colorectal cancer. Therefore, modulation of the ß-catenin pathway offers a strategy to control colorectal cancer progression. The medicinal mushroom Ganoderma lucidum (GL) is a rich source of triterpenes with anticancer properties. Here, we show that ganodermanontriol (GNDT), a purified triterpene from GL, inhibited proliferation of HCT-116 and HT-29 colon cancer cells without a significant effect on cell viability. Moreover, GNDT inhibited transcriptional activity of ß-catenin and protein expression of its target gene cyclin D1 in a dose-dependent manner. A marked inhibition effect was also seen on Cdk-4 and PCNA expression, whereas expression of Cdk-2, p21 and cyclin E was not affected by the GNDT treatment. In addition, GNDT caused a dose-dependent increase in protein expression of E-cadherin and ß-catenin in HT-29 cells. Finally, GNDT suppressed tumor growth in a xenograft model of human colon adenocarcinoma cells HT-29 implanted in nude mice without any side-effects and inhibited expression of cyclin D1 in tumors. In conclusion, our data suggest that ganodermanontriol might be a potential chemotherapeutic agent for the treatment of cancer.
    International Journal of Oncology 03/2011; 38(3):761-7. DOI:10.3892/ijo.2011.898 · 3.03 Impact Factor
Show more