Article

The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL.

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin Biocentre, Midlothian, UK.
Heredity (Impact Factor: 4.11). 11/2009; 105(3):318-27. DOI: 10.1038/hdy.2009.171
Source: PubMed

ABSTRACT Infectious pancreatic necrosis (IPN) is a viral disease with a significant negative impact on the global aquaculture of Atlantic salmon. IPN outbreaks can occur during specific windows of both the freshwater and seawater stages of the salmon life cycle. Previous research has shown that a proportion of the variation seen in resistance to IPN is because of host genetics, and we have shown that major quantitative trait loci (QTL) affect IPN resistance at the seawater stage of production. In the current study, we completed a large freshwater IPN challenge experiment to allow us to undertake a thorough investigation of the genetic basis of resistance to IPN in salmon fry, with a focus on previously identified QTL regions. The heritability of freshwater IPN resistance was estimated to be 0.26 on the observed scale and 0.55 on the underlying scale. Our results suggest that a single QTL on linkage group 21 explains almost all the genetic variation in IPN mortality under our experimental conditions. A striking contrast in mortality is seen between fry classified as homozygous susceptible versus homozygous resistant, with QTL-resistant fish showing virtually complete resistance to IPN mortality. The findings highlight the importance of the major QTL in the genetic regulation of IPN resistance across distinct physiological lifecycle stages, environmental conditions and viral isolates. These results have clear scientific and practical implications for the control of IPN.

0 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper considers the application of genetic and genomic techniques to disease resistance, the interpretation of data arising from such studies and the utilisation of the research outcomes to breed animals for enhanced resistance. Resistance and tolerance are defined and contrasted, factors affecting the analysis and interpretation of field data presented, and appropriate experimental designs discussed. These general principles are then applied to two detailed case studies, infectious pancreatic necrosis in Atlantic salmon and bovine tuberculosis in dairy cattle, and the lessons learnt are considered in detail. It is concluded that the rate limiting step in disease genetic studies will generally be provision of adequate phenotypic data, and its interpretation, rather than the genomic resources. Lastly, the importance of cross-disciplinary dialogue between the animal health and animal genetics communities is stressed.
    Livestock Science 08/2014; · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.
    Evolutionary Applications 05/2014; · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photobacteriosis or fish pasteurellosis is a bacterial disease affecting wild and farm fish. Its etiological agent, the gram negative bacterium Photobacterium damselae subsp. piscicida, is responsible for important economic losses in cultured fish worldwide, in particular in Mediterranean countries and Japan. Efforts have been focused on gaining a better understanding of the biology of the pathogenic microorganism and its natural hosts with the aim of developing effective vaccination strategies and diagnostic tools to control the disease. Conventional vaccinology has thus far yielded unsatisfactory results, and recombinant technology has been applied to identify new antigen candidates for the development of subunit vaccines. Furthermore, molecular methods represent an improvement over classical microbiological techniques for the identification of P. damselae subsp. piscicida and the diagnosis of the disease. The complete sequencing, annotation, and analysis of the pathogen genome will provide insights into the pathogen laying the groundwork for the development of vaccines and diagnostic methods.
    Research Journal of Immunology 01/2014; 2014:793817.

Full-text (2 Sources)

Download
8 Downloads
Available from
May 27, 2014