Article

Cardiovascular effects of relaxin: from basic science to clinical therapy.

Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Vic 3008, Australia.
Nature Reviews Cardiology (Impact Factor: 10.4). 11/2009; 7(1):48-58. DOI: 10.1038/nrcardio.2009.198
Source: PubMed

ABSTRACT Although substantial advances have been achieved in recent decades in the clinical management of heart diseases, new therapies that provide better or additional efficacy with minimal adverse effects are urgently required. Evidence that has accumulated since the 1990s indicates that the peptide hormone relaxin has multiple beneficial actions in the cardiovascular system under pathological conditions and, therefore, holds promise as a novel therapeutic intervention. Clinical trials for heart failure therapy using relaxin revealed several beneficial actions. Here we review findings from mechanistic and applied research in this field, comment on the outcomes of recent phase I/II clinical trails on patients with heart failure, and highlight settings of cardiovascular diseases where relaxin might be effective.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute heart failure (AHF) is characterized by high morbidity and mortality and high costs. Although the treatment of AHF has not changed substantially in recent decades, it is becoming clear that treatment strategies for AHF need to address both the immediate hemodynamic abnormalities giving rise to congestion as well as prevent organ damage that can influence long-term prognosis. Serelaxin, the recombinant form of human relaxin-2, a naturally occurring peptide hormone, has been found to significantly improve symptoms and signs of AHF, prevent in-hospital worsening heart failure, as well as significantly improve 180-day cardiovascular and all-cause mortality after a 48-h infusion commenced within 16 h of presentation (RELAX-AHF study). Available data suggest that the clinical benefits may be attributable to a potential combination of multiple actions of serelaxin, including improving systemic, cardiac, and renal hemodynamics, and protecting cells and organs from damage via anti-inflammatory, anti-cell death, anti-fibrotic, anti-hypertrophic, and pro-angiogenic effects. This manuscript describes the short- and long-term effects of serelaxin in AHF patients, analyzing how these effects can be explained by taking into account the range of hemodynamic and non-hemodynamic actions of serelaxin. In addition, this paper also addresses several aspects related to the role of serelaxin in the therapy of AHF that remain to be clarified and warrant further investigation.
    American Journal of Cardiovascular Drugs 03/2014; · 2.07 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Relaxin, a new drug for heart failure therapy, exerts its cardiac actions through relaxin family peptide receptor 1 (RXFP1). Factors regulating RXFP1 expression remain unknown. We have investigated effects of activation of adrenoceptors (AR), an important modulator in the development and prognosis of heart failure, on expression of RXFP1 in rat cardiomyocytes and mouse left ventricles (LV).
    Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. 05/2014;