Article

Regulators of the cytoplasmic dynein motor.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nature Reviews Molecular Cell Biology (Impact Factor: 37.16). 12/2009; 10(12):854-65. DOI: 10.1038/nrm2804
Source: PubMed

ABSTRACT Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.

0 Bookmarks
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force production by mammalian dynein have called interspecies differences into question. We report that functional differences between yeast and mammalian dynein are real and attributable to a C-terminal motor element absent in yeast, which resembles a 'cap' over the central pore of the mammalian dynein motor domain. Removal of this cap increases the force generation of rat dynein from 1 pN to a yeast-like 6 pN and greatly increases its travel distance. Our findings identify the CT-cap as a novel regulator of dynein function.
    Nature Communications 02/2015; 6:6206. DOI:10.1038/ncomms7206 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Cell Biology 12/2014; DOI:10.1016/j.tcb.2014.12.003 · 12.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial magnetic stimulation (TMS) is a non invasive technique of brain stimulation which could be an interesting therapeutic tool in addictive disorders, being offline repetitive TMS (rTMS) the main strategy used due to it allows to disrupt underlying brain areas and examine behavioral consequences, (Knoch et al., 2006).There are some evidences that rTMS over the dorso-lateral prefrontal (DLPF) cortex is effective reducing craving in several drugs, such as cocaine, tobacco and alcohol (Camprodon et al., 2007; Amiaz et al., 2009; Mishra et al. 2010). In fact, a decrease on cocaine craving could be observed with a single session of rTMS. Complementary, the application of single and paired-pulse TMS in controlled paradigms is a novel and promising strategy in this area: recent results showed that reward modulated TMS-induced motor-evoked potentials, showing greater cortical inhibition during reward expectation (Gupta and Aron, 2010).Regarding alcohol abuse, there is a narrow relation between alcohol consumption and impulsiveness. On one hand, alcohol consumption produces impulsive behavior and desinhibition (Marinkovic et al. 2011); and on the other hand, impulsiveness personality trait predisposes to abusive alcohol consumption (Magid et al. 2007).Considering these evidences and the effectiveness of rTMS as therapeutic tool, use rTMS to reduce impulsivity could be a new approach to alcohol disorders treatment. Prefrontal cortex is a good candidate for this purpose since its pivotal role in impulsiveness behavior (Crews and Boettinger, 2009). Thus, we suggest that high frequency rTMS stimulation could improve the ability of alcohol abusers for control their drinking impulse.
    European Psychiatry 01/2012; 27:1. DOI:10.1016/S0924-9338(12)74247-5 · 3.21 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 20, 2014