Article

Regulators of the cytoplasmic dynein motor.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nature Reviews Molecular Cell Biology (Impact Factor: 37.16). 12/2009; 10(12):854-65. DOI: 10.1038/nrm2804
Source: PubMed

ABSTRACT Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.

0 Bookmarks
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytoplasmic dynein is an AAA+ motor responsible for intracellular cargo transport and force generation along microtubules (MTs). Unlike kinesin and myosin, dynein contains multiple ATPase subunits, with AAA1 serving as the primary catalytic site. ATPase activity at AAA3 is also essential for robust motility, but its role in dynein's mechanochemical cycle remains unclear. Here, we introduced transient pauses in Saccharomyces cerevisiae dynein motility by using a slowly hydrolyzing ATP analog. Analysis of pausing behavior revealed that AAA3 hydrolyzes nucleotide an order of magnitude more slowly than AAA1, and the two sites do not coordinate. ATPase mutations to AAA3 abolish the ability of dynein to modulate MT release. Nucleotide hydrolysis at AAA3 lifts this 'MT gate' to allow fast motility. These results suggest that AAA3 acts as a switch that repurposes cytoplasmic dynein for fast cargo transport and MT-anchoring tasks in cells.
    Nature Structural & Molecular Biology 12/2014; · 11.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant and antitumoral activity. The supposed primary target of this molecule is the proteasome system. Herein, we elucidated intracellular events that are triggered by Amblyomin-X treatment in an attempt to provide new insight into how this serine protease inhibitor, acting on the proteasome, could be comparable with known proteasome inhibitors. The collective results showed aggresome formation after proteasome inhibition that appeared to occur via the non-exclusive ubiquitin pathway. Additionally, Amblyomin-X increased the expression of various chains of the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage signaling and inhibited autophagy activation by modulating mTOR, LC3 and AMBRA1 with probable dynein involvement. Interestingly, one possible role for dynein in the mechanism of action of Amblyomin-X was in the apoptotic response and its crosstalk with autophagy, which involved the factor Bim; however, we observed no changes in the apoptotic response related to dynein in the experiments performed. The characteristics shared among Amblyomin-X and known proteasome inhibitors included NF-κB blockage and nascent polypeptide-dependent aggresome formation. Therefore, our study describes a Kunitz-type protein that acts on the proteasome to trigger distinct intracellular events compared to classic known proteasome inhibitors that are small-cell-permeable molecules. In investigating the experiments and literature on Amblyomin-X and the known proteasome inhibitors, we also found differences in the structures of the molecules, intracellular events, dynein involvement and tumor cell type effects. These findings also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a tool for investigating tumor cell death associated with proteasome inhibition.
    PLoS ONE 12/2014; 9(12):e111907. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower ex- tremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible ‘hot spot’ mutation, p.Ser107Leu present in four families. We used the recently solved crystal structure of a highly conserved region of the Drosophila orthologue of BICD2 to further-explore how the p.Glu774Gly substitution inhibits the binding of BICD2 to Rab6. Overall, the features of BICD2 spinal muscular atrophy, lower extremity predominant are consistent with a pathological process that prefer- entially affects lumbar lower motor neurons, with or without additional upper motor neuron involvement. Defining the phenotypic features in this, the largest BICD2 disease cohort reported to date, will facilitate focused genetic testing and filtering of next generation sequencing-derived variants in cases with similar features.
    Brain 01/2015; · 10.23 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
May 20, 2014