AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol

Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
Diabetes (Impact Factor: 7.9). 11/2009; 59(3):554-63. DOI: 10.2337/db09-0482
Source: PubMed

ABSTRACT Resveratrol, a natural polyphenolic compound that is found in grapes and red wine, increases metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance and reduces fat accumulation in mice. Although it is thought that resveratrol targets Sirt1, this is controversial because resveratrol also activates 5' AMP-activated protein kinase (AMPK), which also regulates insulin sensitivity and mitochondrial biogenesis. Here, we use mice deficient in AMPKalpha1 or -alpha2 to determine whether the metabolic effects of resveratrol are mediated by AMPK.
Mice deficient in the catalytic subunit of AMPK (alpha1 or alpha2) and wild-type mice were fed a high-fat diet or high-fat diet supplemented with resveratrol for 13 weeks. Body weight was recorded biweekly and metabolic parameters were measured. We also used mouse embryonic fibroblasts deficient in AMPK to study the role of AMPK in resveratrol-mediated effects in vitro.
Resveratrol increased the metabolic rate and reduced fat mass in wild-type mice but not in AMPKalpha1(-/-) mice. In the absence of either AMPKalpha1 or -alpha2, resveratrol failed to increase insulin sensitivity, glucose tolerance, mitochondrial biogenesis, and physical endurance. Consistent with this, the expression of genes important for mitochondrial biogenesis was not induced by resveratrol in AMPK-deficient mice. In addition, resveratrol increased the NAD-to-NADH ratio in an AMPK-dependent manner, which may explain how resveratrol may activate Sirt1 indirectly.
We conclude that AMPK, which was thought to be an off-target hit of resveratrol, is the central target for the metabolic effects of resveratrol.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-clinical findings have provided mounting evidence that resveratrol, a dietary polyphenol, may confer health benefits and protect against a variety of medical conditions and age-related complications. However, there is no consistent evidence of an increased protection against metabolic disorders and other ailments when comparing studies in laboratory animals and humans. A number of extraneous and potential confounding variables can affect the outcome of clinical research. To date, most of the studies that have investigated the effect of resveratrol administration on patient outcomes have been limited by their sample sizes. In this review we will survey the latest advances regarding the timing, dosage, formulation, bioavailability, and toxicity of resveratrol, and resveratrol-drug interactions in human studies. Moreover, the present report focuses on the actions of resveratrol treatment in combatting diseases, such as cancer, diabetes, neurodegeneration, cardiovascular disease, and other age-related ailments.
    Ageing research reviews 01/2015; 21. DOI:10.1016/j.arr.2015.01.002 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition to thousands of research papers related to resveratrol (RSV), approximated 300 review articles have been published. Earlier research tended to focus on pharmacological activities of RSV related to cardiovascular systems, inflammation, and carcinogenesis/cancer development. More recently, the horizon has been broadened by exploring the potential effect of RSV on the aging process, diabetes, neurological dysfunction, etc. Herein, we primarily focus on the in vivo pharmacological effects of RSV reported over the past 5 years (2009-2014). In addition, recent clinical intervention studies performed with resveratrol are summarized. Some discrepancies exist between in vivo studies with animals and clinical studies, or between clinical studies, which are likely due to disparate doses of RSV, experimental settings, and subject variation. Nevertheless, many positive indications have been reported with mammals, so it is reasonable to advocate for the conduct of more definitive clinical studies. Since the safety profile is pristine, an added advantage is the use of RSV as a dietary supplement. This article is part of a Special Issue entitled: Resveratol: Challenges in translating pre-clincial findigns to iproved patient outcomes. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 01/2015; DOI:10.1016/j.bbadis.2015.01.014 · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed senescence in hydrogen peroxide (H2O2)-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1), attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation) in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3), a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol's effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation are regulated by the AMPK-FOXO3 pathway and in some situations, but not all, by SIRT1.
    PLoS ONE 02/2015; 10(2):e0115341. DOI:10.1371/journal.pone.0115341 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014