The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

Emory Vaccine Center and the Hope Clinic, Emory University School of Medicine, Atlanta, GA 30022, USA.
The Journal of Immunology (Impact Factor: 5.36). 11/2009; 183(12):7919-30. DOI: 10.4049/jimmunol.0803903
Source: PubMed

ABSTRACT The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Tick-borne encephalitis virus (TBEV) is transferred to humans by ticks. The virus causes tick-borne encephalitis (TBE) with symptoms such as meningitis and meningoencephalitis. About one third of the patients suffer from long-lasting sequelae after clearance of the infection. Studies of the immune response during TBEV-infection are essential to the understanding of host responses to TBEV-infection and for the development of therapeutics. Here, we studied in detail the primary CD8 T cell response to TBEV in patients with acute TBE. Peripheral blood CD8 T cells mounted a considerable response to TBEV-infection as assessed by Ki67 and CD38 co-expression. These activated cells showed a CD45RA-CCR7-CD127- phenotype at day 7 after hospitalization, phenotypically defining them as effector cells. An immunodominant HLA-A2-restricted TBEV epitope was identified and utilized to study the characteristics and temporal dynamics of the antigen-specific response. The functional profile of TBEV-specific CD8 T cells was dominated by variants of mono-functional cells as the effector response matured. Antigen-specific CD8 T cells predominantly displayed a distinct Eomes+Ki67+T-bet+ effector phenotype at the peak of the response, which transitioned to an Eomes-Ki67-T-bet+ phenotype as the infection resolved and memory was established. These transcription factors thus characterize and discriminate stages of the antigen-specific T cell response during acute TBEV-infection. Altogether, CD8 T cells responded strongly to acute TBEV infection and passed through an effector phase, prior to gradual differentiation into memory cells with distinct transcription factor expression-patterns throughout the different phases.
    PLoS Pathogens 01/2015; DOI:10.1371/journal.ppat · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
    Frontiers in Cellular and Infection Microbiology 01/2014; 4:177. DOI:10.3389/fcimb.2014.00177 · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A definitive understanding of survival and differentiation potential in humans of T cell subpopulations is of paramount importance for the development of effective T cell therapies. In particular, uncovering the dynamics in vivo in humans of the recently described T memory stem cells (TSCM) would be crucial for therapeutic approaches that aim at taking advantage of a stable cellular vehicle with precursor potential. We exploited data derived from two gene therapy clinical trials for an inherited immunodeficiency, using either retrovirally engineered hematopoietic stem cells or mature lymphocytes to trace individual T cell clones directly in vivo in humans. We compared healthy donors and bone marrow-transplanted patients, studied long-term in vivo T cell composition under different clinical conditions, and specifically examined TSCM contribution according to age, conditioning regimen, disease background, cell source, long-term reconstitution, and ex vivo gene correction processing. High-throughput sequencing of retroviral vector integration sites (ISs) allowed tracing the fate of more than 1700 individual T cell clones in gene therapy patients after infusion of gene-corrected hematopoietic stem cells or mature lymphocytes. We shed light on long-term in vivo clonal relationships among different T cell subtypes, and we unveiled that TSCM are able to persist and to preserve their precursor potential in humans for up to 12 years after infusion of gene-corrected lymphocytes. Overall, this work provides high-resolution tracking of T cell fate and activity and validates, in humans, the safe and functional decade-long survival of engineered TSCM, paving the way for their future application in clinical settings. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 02/2015; 7(273):273ra13-273ra13. DOI:10.1126/scitranslmed.3010314 · 14.41 Impact Factor