Cdk2 and Cdk4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53-null cells.

Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 11/2009; 30(3):694-710. DOI: 10.1128/MCB.00253-09
Source: PubMed

ABSTRACT The two mitotic centrosomes direct spindle bipolarity to maintain euploidy. Centrosome amplification-the acquisition of > or =3 centrosomes-generates multipolar mitoses, aneuploidy, and chromosome instability to promote cancer biogenesis. While much evidence suggests that Cdk2 is the major conductor of the centrosome cycle and that it mediates centrosome amplification induced by various altered tumor suppressors, the role played by Cdk4 in a normal or deregulated centrosome cycle is unknown. Using a gene knockout approach, we report that Cdk2 and Cdk4 are critical to the centrosome cycle, since centrosome separation and duplication are premature in Cdk2(-)(/)(-) mouse embryonic fibroblasts (MEFs) and are compromised in Cdk4(-)(/)(-) MEFs. Additionally, ablation of Cdk4 or Cdk2 abrogates centrosome amplification and chromosome instability in p53-null MEFs. Absence of Cdk2 or Cdk4 prevents centrosome amplification by abrogating excessive centriole duplication. Furthermore, hyperactive Cdk2 and Cdk4 deregulate the licensing of the centrosome duplication cycle in p53-null cells by hyperphosphorylating nucleophosmin (NPM) at Thr199, as evidenced by observations that ablation of Cdk2, Cdk4, or both Cdk2 and Cdk4 abrogates that excessive phosphorylation. Since a mutant form of NPM lacking the G(1) Cdk phosphorylation site (NPM(T199A)) prevents centrosome amplification to the same extent as ablation of Cdk2 or Cdk4, we conclude that the Cdk2/Cdk4/NPM pathway is a major guardian of centrosome dysfunction and genomic integrity.

Download full-text


Available from: Philipp Kaldis, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell contains many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost in cancers as well. Overexpression of Cyclin D1 in a large number of breast cancers causes overactivation of the Cyclin Dependent Kinases, including Cdk2. Constitutive Cdk2 activation through Cyclin D1 generates tumors in mice that are aneuploid and contain many characteristics indicative of chromosomal instability. Expression of these complexes in the MCF10A cell line leads to Rb hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This leads to a strengthening of the spindle assembly checkpoint and renders cells more sensitive to the spindle poison paclitaxel. Constitutive Rb phosphorylation also causes a weakening of the p53-dependent tetraploidy checkpoint. Cells with overactive Cdk2 fail to arrest after mitotic slippage in the presence of paclitaxel or cytokinesis failure during treatment with cytochalasin-B, generating 8N populations. This additional increase in DNA content appears to further intensify the tetraploidy checkpoint in a step-wise manner. These polyploid cells are not viable long-term, either failing to undergo division or creating daughter cells that are unable to undergo subsequent division. This study raises intriguing questions about the treatment of tumors with overactive Cdk2.
    Journal of Cell Science 01/2013; 126(5). DOI:10.1242/jcs.117382 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human nucleophosmin/B23 is a phosphoprotein involved in ribosome biogenesis, centrosome duplication, cancer, and apoptosis. Its function, localization, and mobility within cells, are highly regulated by phosphorylation events. Up to 21 phosphosites of B23 have been experimentally verified even though the corresponding kinase is known only for seven of them. In this work, we predict the phosphorylation sites in human B23 using six kinase-specific servers (KinasePhos 2.0, PredPhospho, NetPhosK 1.0, PKC Scan, pkaPS, and MetaPredPS) plus DISPHOS 1.3, which is not kinase specific. The results were integrated with information regarding 3D structure and residue conservation of B23, as well as cellular localizations, cellular processes, signaling pathways and protein-protein interaction networks involving both B23 and each predicted kinase. Thus, all 40 potential phosphosites of B23 were predicted with significant score (>0.50) as substrates of at least one of 38 kinases. Thirteen of these residues are newly proposed showing high susceptibility of phosphorylation considering their solvent accessibility. Our results also suggest that the enzymes CDKs, PKC, CK2, PLK1, and PKA could phosphorylate B23 at higher number of sites than those previously reported. Furthermore, PDK, GSK3, ATM, MAPK, PKB, and CHK1 could mediate multisite phosphorylation of B23, although they have not been verified as kinases for this protein. Finally, we suggest that B23 phosphorylation is related to cellular processes such as apoptosis, cell survival, cell proliferation, and response to DNA damage stimulus, in which these kinases are involved. These predictions could contribute to a better understanding, as well as addressing further experimental studies, of B23 phosphorylation.
    Journal of Cellular Biochemistry 07/2012; 113(7):2364-74. DOI:10.1002/jcb.24108 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome amplification (CA) contributes to carcinogenesis by generating aneuploidy. Elevated frequencies of CA in most benign breast lesions and primary tumors suggest a causative role for CA in breast cancers. Clearly, identifying which and how altered signal transduction pathways contribute to CA is crucial to breast cancer control. Although a causative and cooperative role for c-Myc and Ras in mammary tumorigenesis is well documented, their ability to generate CA during mammary tumor initiation remains unexplored. To answer that question, K-Ras(G12D) and c-Myc were induced in mouse mammary glands. Although CA was observed in mammary tumors initiated by c-Myc or K-Ras(G12D), it was detected only in premalignant mammary lesions expressing K-Ras(G12D). CA, both in vivo and in vitro, was associated with increased expression of the centrosome-regulatory proteins, cyclin D1 and Nek2. Abolishing the expression of cyclin D1, Cdk4 or Nek2 in MCF10A human mammary epithelial cells expressing H-Ras(G12V) abrogated Ras-induced CA, whereas silencing cyclin E1 or B2 had no effect. Thus, we conclude that CA precedes mammary tumorigenesis, and interfering with centrosome-regulatory targets suppresses CA.
    Oncogene 09/2010; 29(36):5103-12. DOI:10.1038/onc.2010.253 · 8.56 Impact Factor